首页> 外文会议>Conference on Instruments, Methods, and Missions for Astrobiology >Probabilistic classification of elemental abundance distributions in Nakhla and Apollo 17 lunar dust samples
【24h】

Probabilistic classification of elemental abundance distributions in Nakhla and Apollo 17 lunar dust samples

机译:Nakhla和Apollo 17月球粉尘样本中元素丰富分布的概率分类

获取原文

摘要

Analysis of spectral and imaging data from meteoritic samples and sample return missions would benefit significantly from a systematic, quantitative statistical classification methodology and a common set of standards for data collection [McDonald and Storrie-Lombardi, 2006]. Stochastic artificial neural networks can be trained using elemental abundance distributions for the detection of macroscopic fossils [Storrie-Lombardi and Hoover, 2004] and extant microbial life [Storrie-Lombardi and Hoover, 2005]. These non-linear algorithms are particularly attractive since they can produce a Bayesian estimate of the classification accuracy of either human experts or automated, unsupervised classification algorithms. In sub-ocean and surface basalts on earth the networks can distinguish regions of biotic and abiotic alteration of basalt glass from unaltered samples using only elemental abundances as inputs [Storrie-Lombardi and Fisk, 2004b]. Recently, evidence has been presented documenting the presence of morphologic signatures in the Mars meteorite Nakhla [Fisk et al., 2004; Fisk et al., 2006] previously noted in regions of biotic alteration in sub-ocean and surface terrestrial basalts [Fisk et al., 2003; Furnes et al., 2004]. The tunneling alterations are not conclusive evidence of biotic alteration of Nakhla on Mars. However, the meteorite is well known to have experienced aqueous alteration prior to arrival on earth and is rich in carbon [Gibson et al., 2006; McKay et al., 2006]. We here present an initial application of our probabilistic classification strategy to assess elemental abundance distributions from multiple target regions in Nakhla and lunar dust samples collected by Apollo 17 astronauts. We present scanning electron microscope images and elemental abundance point distributions (C, N, O, Na2O, MgO, Al2O3, SiO2, P2O5, S, Cl, K2O, CaO, and FeO) for a series of target regions. We discuss our observations in the context of data previously presented in these meetings for extant cyanobacteria, fossil trilobites, Orgueil meteorite, and terrestrial basalt targets. These data are being added to a database that will made available to the biogeology and astrobiology communities as part of an ongoing effort to provide a quantitative probabilistic methodology for analysis of putative elemental abundance geobiological signatures.
机译:来自陨石样品的光谱和成像数据分析和样本返回任务将从系统,定量统计分类方法和数据收集常用标准中显着受益[麦当劳和斯托里 - 伦巴第2006]。随机人工神经网络可以使用元素丰富分布训练,用于检测宏观化石[Storrie-Lombardi和胡佛,2004]和现存的微生物生命[Storrie-Lombardi和Hover,2005]。这些非线性算法特别有吸引力,因为它们可以产生人类专家或自动化无监督的分类算法的分类准确性的贝叶斯估计。在地球上海洋和表面玄武岩中,网络可以将玄武岩玻璃的生物和非生物改变区域区分从未改变的样品使用基本丰富作为输入[Storrie-Lombardi和Fisk,2004b]。最近,已经介绍了在Mars Meteorite Nakhla [Fisk等,2004年的形态签名的存在证明了证据。 Fisk等人,2006]之前注意到了次海洋和表面陆地玄武岩的生物改变区域[Fisk等,2003; Furnes等,2004]。隧道改变不是在火星上纳克拉生物改变的确凿证据。然而,富人众所周知,在到达地球之前具有经历的水性改变,富含碳[Gibson等,2006; McKay等,2006]。我们在这里初步应用了我们的概率分类策略,以评估由阿波拉17宇航员收集的Nakhla和月球粉尘样本中多目标区域的元素丰富分布。我们呈现扫描电子显微镜图像和元素丰度点分布(C,N,O,Na2O,MgO,Al2O3,SiO2,P2O5,S,Cl,K 2 O,CaO和Feo),用于一系列目标区域。我们讨论了我们在先前在这些会议的数据的背景下讨论了观察,这些人的外毒细胞,化石三叶虫,orgueil陨石和陆地玄武岩靶标。这些数据被添加到数据库中,该数据库将可用于生物果园和天地学社区,作为提供定量概率方法的持续努力,以便分析推定的元素丰富的地质凝视性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号