首页> 外文会议>Composites Polycon Conference >Interlaminar Normal Stresses in Composite Materials Using Shell Elements for Strength Analysis
【24h】

Interlaminar Normal Stresses in Composite Materials Using Shell Elements for Strength Analysis

机译:用壳体元素进行强度分析的复合材料中的跨界正常应力

获取原文

摘要

Composite materials are increasingly often used in high loaded thick-walled curved shells. The stress state involves interlaminar normal and shear stresses, which can cause structural failure by delamination due to the low interlaminar strength. The paper presents a new method for singly and arbitrary doubly curved thick-walled laminate strength analysis including interlaminar shear and normal stresses using common layered 3-, 4-, 6-, or 8-node shell elements. Commercially available FEM packages do as of yet not offer interlaminar normal stresses as a result of layered shell element analysis. On the other hand, a fully three-dimensional FE calculation using solid elements is often not possible due to computing power or/and complex geometry. A numerically efficient post process method is used to complete the three-dimensional stress tensor. A differential equation of second order for the through-the-thickness displacement w(r) is derived from the radial equilibrium equation in cylindrical coordinates. The input values are the in-plane strains, stacking sequence of the laminate, material properties, and geometry information such as the curvature radii. All these parameters are available from a finite shell element model. The solution of w(r) is found by using the finite-differential method. The interlaminar normal stresses are obtained by combining the through-the-thickness displacement solution w(r) with the stress-strain equation. This method is linked with commercial shell elements. Three-dimensional failure criteria applicable to unidirectional fiber composites, namely Tsai-Wu, Hashin, Maximum Stress and Puck, are implemented to predict failure or factors of safety. Strength and stress analyses are presented for different geometries, materials, and laminates and are compared with finite solid modeling results and experimental evaluation.
机译:复合材料越来越多地用于高负载厚壁弯曲壳中。压力状态涉及层间正常和剪切应力,这可能由于低间隙强度而导致分层的结构失败。本文呈现了一种单独和任意双弯曲厚壁层压层压强度分析的新方法,包括使用普通分层3-,4-,6-或8节点壳元素的层间剪切和正常应力。商业上可获得的FEM包,尚未提供因层状壳元素分析而提供的Intermarar正常应力。另一方面,由于计算功率或/和复杂的几何形状,通常不可能使用固体元素的完全三维Fe计算。数值有效的后工艺方法用于完成三维应力张量。用于贯穿厚度位移W(R)的二阶的微分方程源自圆柱形坐标中的径向平衡方程。输入值是平面内菌株,层压材料的堆叠序列,材料特性和诸如曲率半径的几何信息。所有这些参数都可以从有限的shell元素模型中获得。通过使用有限差分法发现W(R)的溶液。通过将贯穿厚度的位移溶液W(R)与应力 - 应变方程组合来获得层间正常应力。该方法与商业壳元件连接。实施三维故障标准,适用于单向纤维复合材料,即Tsai-wu,Hashin,最大应力和冰球,以预测安全性或安全因素。针对不同的几何形状,材料和层压材料呈现强度和应力分析,并与有限的实体建模结果和实验评估进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号