首页> 外文会议>Materials Research Society Symposium on Processing-Structure-Mechanical Property Relations in Composite Materials >Residual Stress Distribution, Intermolecular Force, And Frictional Coefficient Maps In Diamond Films: Processing-Structure-Mechanical Property Relationship
【24h】

Residual Stress Distribution, Intermolecular Force, And Frictional Coefficient Maps In Diamond Films: Processing-Structure-Mechanical Property Relationship

机译:金刚石薄膜中的残余应力分布,分子间力和摩擦系数图:加工 - 结构 - 机械性质关系

获取原文

摘要

Carbon in its various forms, specifically nanocrystalline diamond, may become a key material for the manufacturing of micro- and nano-electromechanical (M/NEMS) devices in the 21st Century. In order to utilize effectively these materials for M/NEMS applications, understanding of their microscopic structure and physical properties (mechanical, in particular) become indispensable. The micro- and nanocrystalline diamond films were grown using hot-filament and microwave chemical vapor deposition techniques involving novel CH{sub}4/[TMB for boron doping and H{sub}2S for sulfur incorporation] in high hydrogen dilution chemistry. To investigate residual stress distribution and intermolecular forces at the nanoscale, the films were characterized using Raman spectroscopy and atomic force microscopy in terms of topography, force curves and force volume imaging. Traditional force curve measures the force felt by the tip as it approaches and retracts from a point on the sample surface, while force volume is an array of force curves over an extended range of sample area. Moreover, detailed microscale structural studies are able to demonstrate that the carbon bonding configuration (sp2 versus sp3 hybridization) and surface chemical termination in both the un-doped and doped diamond have a strong effect on nanoscale intermolecular forces. The preliminary information in the force volume measurement was decoupled from topographic data to offer new insights into the materials' surface and mechanical properties of diamond films. These measurements are also complemented with scanning electron microscopy and X-ray diffraction to reveal their morphology and structure and frictional properties, albeit qualitative using lateral force microscopy mode. We present these comparative results and discuss their potential impact for electronic and electromechanical applications.
机译:碳的各种形式,具体地纳米金刚石,可能成为制造21世纪微米和纳米机电(M / NEMS)装置的主要材料。为了有效地利用这些材料M / NEMS应用,了解他们的微观结构和物理性质的(机械的,特别是)成为不可或缺的。微米和纳米金刚石薄膜用热丝和涉及新颖CH {子} 4微波化学汽相淀积技术生长/ [TMB为硼掺杂和H {}子2S用于引入硫]在高氢稀释化学。为了研究在纳米尺度上的残余应力分布和分子间力,将膜使用拉曼光谱和原子力显微镜在地形,力曲线和力体积成像方面表征。传统的力曲线的措施感受到的力由尖端随着其接近并从样品表面上的点缩回,而力体积是力曲线的过采样区域的扩展范围的阵列。此外,详细的微尺度结构研究能够证明,碳键合结构(SP2与sp 3杂化)和表面化学终止在未掺杂的和掺杂的金刚石都具有纳米级的分子间力有很大的影响。在力体积测量的初步信息是从地形数据解耦提供新的见解材料表面和金刚石膜的机械性能。这些测量还与扫描电子显微镜和X射线衍射的补充以揭示其形态和结构和摩擦特性,尽管定性使用横向力显微镜模式。我们目前这些比较结果,并讨论他们对电子和机电应用的潜在影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号