首页> 外文会议>Intermag Conference >Controlling magnetic vortices through exchange bias
【24h】

Controlling magnetic vortices through exchange bias

机译:通过交换偏压控制磁涡旋

获取原文
获取外文期刊封面目录资料

摘要

In recent years, intense research is being pursued studying patterned magnetic nanostructures, both for fundamental reasons and for their applications in recording media or in novel types of spintronic nanodevices. Here, the magnetic behavior of exchange coupled ferromagnetic (FM) - antiferromagnetic (AFM) disks, with composition Ta(5nm)/Py(12nm)/IrMn(5nm)/Pt(2nm), where Py, which denotes Permalloy (i.e., NiFe) is FM and IrMn is AFM, with micron and submicron diameters, is investigated [1,2]. These structures exhibit different magnetization reversal mechanisms depending on the direction of the applied magnetic field. Such behaviors are studied by means of magneto-optic Kerr effect, magnetic force microscopy imaging and micromagnetic simulations. As can be seen in Figure 1, shifted, constricted hysteresis loops, typical for vortex formation, are observed for fields applied along the unidirectional coupling (i.e., exchange bias), which is defined by the field cooling direction from above the blocking temperature of the system (arbitrarily taken as 0°). However, beyond a critical angle from the field cooling direction, magnetization reversal occurs via coherent rotation. The value of this critical angle can be trigonometrically determined to be: θ{sub}C=arcsin[H{sub}(N,0)/H{sub}(E,0)], where H{sub}(E,0) and H{sub}(N,0) are the exchange bias field and the vortex nucleation field of the loop measured along 0°. Since both H{sub}(E,0) and H{sub}(N,0) depend on the disk diameter, the critical angle is different for different diameters (e.g., θ{sub}C=80° and 22° for disks with 400nm and 1μm diameter, respectively). Interestingly, for a fixed disk size, the critical angle can still be experimentally tailored by varying the magnitude of the exchange bias field. This can be achieved by subjecting the FM-AFM disks to field-cooling processes in fields of opposite polarity [2].
机译:近年来,正在追求激烈的研究,用于研究型磁纳米结构,无论是在记录媒体还是在记录媒体或新颖的旋转型纳米型中的应用。这里,交换耦合铁磁性(FM) - 反铁磁性(AFM)磁盘的磁性特性,其中组合物Ta(5nm)/ py(12nm)/ Irmn(5nm)/ pt(2nm),其中denotessperog(即, NiFe)是FM,IRMN是AFM,用微米和亚微米直径,进行了研究[1,2]。这些结构根据所施加的磁场的方向表现出不同的磁化反转机构。通过磁光克尔效应,磁力显微镜成像和微磁性模拟研究了这种行为。如图1所示,对于沿着单向耦合(即,交换偏压)施加的场,观察到涡旋形成典型的涡流形成的典型的换档的滞后环,其由从上方的封闭温度从上方的挡板温度定义系统(任意接受为0°)。然而,超出了从场冷方向的临界角度,通过相干旋转发生磁化反转。该临界角度的值可以三角地确定为:θ{sub} c = arcsin [h {sub}(n,0)/ h {sub}(e,0)],其中h {sub}(e, 0)和H {sub}(n,0)是沿0°测量的环路的交换偏置字段和涡流成核字段。由于H {sub}(e,0)和h {sub}(n,0)取决于磁盘直径,因此对于不同直径(例如,θ} c = 80°和22°,临界角度不同分别具有400nm和1μm直径的磁盘。有趣的是,对于固定磁盘尺寸,仍然可以通过改变交换偏置场的大小进行实验地定制临界角度。这可以通过使FM-AFM磁盘对相反极性的字段进行现场冷却过程来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号