首页> 外文会议>Society of Petroleum Engineers Reservoir Simulation Symposium >Unstructured Cut-Cell Grids for Modeling Complex Reservoirs
【24h】

Unstructured Cut-Cell Grids for Modeling Complex Reservoirs

机译:用于建模复杂储层的非结构化切割单元格

获取原文

摘要

Effective workflows for translating earth models into simulation models require grids that preserve geologic accuracy, offer flexible resolution control, integrate tightly with upscaling, and can be generated easily. Corner-point grids and pillar-based unstructured grids fail to satisfy these objectives; hence, a truly 3D unstructured approach is required. This paper describes unstructured cut-cell gridding tools that address these needs and improve the integration of our overall reservoir modeling workflows. The construction of simulation grids begins with the geologic model: a numerical representation of the reservoir structure, stratigraphy, and properties. Our gridding utilizes a geochronological (GeoChron) map from physical coordinates to an unfaulted and unfolded depositional coordinate system. The mapping is represented implicitly on a tetrahedral mesh that conforms to faults, and it facilitates accurate geostatistical modeling of static depositional properties. In the simplest use case, we create an explicit representation of the geologic model as an unstructured polyhedral grid. Away from faults and other discontinuities, the cells are hexahedral, highly orthogonal, and arranged in a structured manner. Geometric cutting operations create general polyhedra adjacent to faults and explicit contact polygons across faults. The conversion of implicit models to explicit grids is conceptually straightforward, but the implementation is nontrivial due to the limitations of finite precision arithmetic and the need to remove small cells formed in the cutting process. In practice, simulation grids are often constructed at coarser resolutions than earth models. Our implementation of local grid coarsening and refinement exploits the flexibility of unstructured grids to minimize upscaling errors and preserve critical geologic features. Because the simulation grid and the geologic model are constructed using the same mapping, fine cells can be nested exactly inside coarse cells. Therefore, flow-based upscaling can be applied efficiently without resampling onto temporary local grids. This paper describes algorithms and data structures for constructing, storing, and simulating cut-cell grids. Examples illustrate accurate modeling of normal faults, y-faults, overturned layers, and complex stratigraphy. Flow results, including a field sector model, show the suitability of cut-cell grids for simulation.
机译:用于将地球模型转化为仿真模型的有效工作流程需要栅格保存地质精度,提供灵活的分辨率控制,紧紧地集成,可以轻松生成。角点网格和基于支柱的非结构化网格未能满足这些目标;因此,需要真正的3D非结构化方法。本文介绍了解决这些需求的非结构化切割单元格栅工具,并改善整体储层建模工作流程的集成。模拟网格的构建始于地质模型:储层结构,地层和性质的数值表示。我们的网格利用来自物理坐标的地形学(地理学)地图到未脱落和展开的沉积坐标系。映射隐含地表示,其符合故障的四面体网,并且促进了静态沉积特性的准确地质统计学建模。在最简单的用例中,我们创建了地质模型作为非结构化多面体网格的显式表示。远离故障和其他不连续性,细胞是六面前,高度正交,并以结构化的方式排列。几何切割操作在故障中创建邻近故障和显式接触多边形的一般多面体。隐性模型转换为显式网格在概念上是简单的,但由于有限精度算术的局限性以及需要去除切割过程中形成的小细胞的局限性,实现是不动的。在实践中,模拟网格通常以粗糙的分辨率构造而不是地球模型。我们的本地网格粗化和改进的实施利用非结构化网格的灵活性,以最大限度地减少升高误差并保持关键地质特征。因为使用相同的映射构造了模拟网格和地质模型,所以细胞可以嵌套在粗略细胞内。因此,可以有效地施加基于流量的Upscaling而不重新采样到临时本地网格上。本文介绍了用于构建,存储和模拟切割单元格的算法和数据结构。示例说明了正常断层,Y故障,翻转层和复杂地层的准确建模。流动结果,包括场扇区模型,显示了切割细胞网格进行仿真的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号