首页> 外文会议>Society of Petroleum Engineers Reservoir Simulation Symposium >Adaptive-Implicit Strategy for Treating Velocity-Dependent Mobilities in Reservoir Simulation
【24h】

Adaptive-Implicit Strategy for Treating Velocity-Dependent Mobilities in Reservoir Simulation

机译:用于治疗水库模拟中速度依赖性迁移率的自适应隐含策略

获取原文

摘要

In petroleum reservoirs, it is common to assume that the superficial velocity of a fluid phase equals a mobility coefficient (permeability over viscosity) multiplying the opposite of the pressure gradient. Phase mobility is typically a function of phase saturations, compositions, temperature, and to a lesser extent pressure, but in specific circumstances it may also depend on the velocity itself. For example, in polymer flooding the aqueous phase viscosity is velocity-dependent due to non-Newtonian effects. The numerical treatment of velocity-dependent mobilities in reservoir simulators based on the finite-volumes method is still an unsettled topic. For a fully implicit discretization, the main difficulty lies in the fact that velocities are not necessarily aligned with the grid; therefore the velocity-dependent mobility governing the flux across a cell face is not merely a function of the normal pressure drop. In addition, the implicit relationship between velocity and pressure gradient needs to be inverted for each flux, at each nonlinear iteration. To get around the above difficulties, several commercial or academic simulators implement a semi-implicit scheme where the pressure gradient driving the flow is evaluated implicitly, while the velocity used in mobility calculations is evaluated explicitly based on the previously converged time step. However, a semi-implicit formulation may be subject to stability restrictions. In this work, we first review the derivation of a linear stability criterion for the two-level semi-implicit discretization of simplified monophasic, non-Newtonian or non-Darcy flow equations. Based on this criterion, we propose an adaptive-implicit strategy where for each individual flux the velocity argument in the mobility function is evaluated either explicitly or implicitly. We discuss the numerical accuracy of this scheme and its benefits in terms of computational cost. Finally, using a specifically designed MATLAB code, we validate our adaptive-implicit strategy on representative 1D and 2D nonlinear test cases.
机译:在石油储存器中,常常假设流体相的表面速度等于迁移率系数(粘度的渗透率)乘以压力梯度的相反。相迁移率通常是相饱和,组合物,温度和较小程度压力的函数,但在特定情况下,它也可能取决于速度本身。例如,在聚合物泛滥中,水相粘度因非牛顿效应而依赖于速度。基于有限卷法的储层模拟器中速度依赖性的数值治疗仍然是一个令人不安的主题。为了完全隐含的离散化,主要难度在于,速度不一定与电网对齐;因此,在细胞面上控制通量的速度依赖性迁移不仅仅是正常压降的函数。另外,在每个非线性迭代处需要速度和压力梯度之间的隐式关系,以便在每个非线性迭代中倒置每个磁通量。为了围绕上述困难,几个商业或学术模拟器实现了一种半隐式方案,其中暗中评估了驱动流的压力梯度,而基于先前融合的时间步骤明确地评估移动性计算的速度。然而,半隐式配方可能受到稳定限制。在这项工作中,我们首先审查用于两级半隐式离散化的线性稳定性标准的推导,简化单表,非牛顿或非达到流动方程。基于该标准,我们提出了一种自适应隐含的策略,其中每个单独的助焊函数都是显式或隐含地评估移动函数中的速度参数。我们讨论了该方案的数值准确性及其在计算成本方面的好处。最后,使用专门设计的MATLAB代码,我们验证了代表1D和2D非线性测试用例的自适应隐含策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号