首页> 外文会议>Society of Petroleum Engineers Annual Technical Conference and Exhibition >Impacts of the Porosity-Permeability Transform Throughout the Reservoir Modeling Workflow
【24h】

Impacts of the Porosity-Permeability Transform Throughout the Reservoir Modeling Workflow

机译:孔隙渗透性变换在整个储层建模工作流程中的影响

获取原文
获取外文期刊封面目录资料

摘要

Reservoir simulation history matching typically involves a process whereby reservoir rock, fluid properties and well-bore conditions are modified in some systematic way to match observed production rates and pressures. The degree to which initial reservoir and well parameters need to be modified can often be attributed to the amount and quality of hard data available and the integration of that data into the geocellular model. All too often, however, reservoir engineers find that they must modify reservoir parameters significantly in order to obtain a history match. Historically, porosity cut-offs have often been applied to fine-grid geocellular models during upscaling to obtain the reservoir simulation-scale model. Porosity cut-offs have typically been selected by inspection of the core-derived porosity- permeability (P&P) relationship(s) and selecting the porosity that falls below an a priori specified permeability cut-off. During subsequent history matching, a disconnection between upscaled geocellular model and history-matched permeabilities becomes apparent. Permeability modifiers of two or more often need be applied across the reservoir to match reservoir performance. Discrepancies between well-log-derived porosities and core-measured porosities due to the scale (averaging) effects of the logs have been long recognized and can be accounted for in various ways (Klein et al., 2006). However, the discrepancy in permeabilities between the initial upscaled geocellular and history-matched reservoir simulation models appears to be different. In 2007, Delfiner provided a very simple, yet elegant, explanation for this discrepancy and one potential solution to the problem. Simple examples are utilized to show how errors in the porosity-permeability transform can propagate throughout the model building and history matching process, resulting in a potentially significant underestimation of OOIP and recovery. In particular, the potential impacts of the porosity-permeability transform on net pay definition, liquid permeability, initial water saturation, relative permeability, fractional flow, production rate and ultimate recovery are discussed along with how the implementation of the suggested solution by Delfiner (2007), together with other approaches, can help mitigate these errors.
机译:储层仿真历史匹配通常涉及一种方法,其中储层岩石,流体性质和孔隙良好的条件以某种系统的方式进行修改,以匹配观察到的生产率和压力。需要修改初始储层和井参数的程度通常可以归因于可用的硬数据的数量和质量以及将该数据集成到地理蜂窝模型中。然而,常见的是,水库工程师发现他们必须显着修改储层参数,以获得历史匹配。从历史上看,在升高期间,孔隙度截止通常被应用于细栅格地理蜂窝模型,以获得储层模拟规模模型。通常通过检查核心衍生的孔隙率(P&P)关系并选择低于优先于优先渗透率切断的孔隙率来选择孔隙率截止。在随后的历史匹配期间,Uppaly Geocellular模型与历史匹配的渗透率之间的断开变得明显。两种或多种经常需要的渗透性改性剂在水库上施加以匹配储层性能。由于日志的尺度(平均值)效果导致的良好日志衍生的孔隙率和核心测量孔隙率之间的差异已经很长,并且可以以各种方式占(Klein等,2006)。然而,初始上升的地理细胞和历史匹配的储层模拟模型之间的渗透率的差异似乎不同。 2007年,Delfiner为这种差异和一个潜在的解决方案提供了一个非常简单,但优雅的解释。利用简单的例子来展示孔隙磁性变换中的误差如何在整个模型建筑和历史匹配过程中传播,导致ooIP和恢复的可能性显着低估。特别地,与Delfiner的建议解决方案的实施方式讨论了孔隙率变换对净支付定义,液态渗透性,初始水饱和度,相对渗透性,分数,生产率和最终恢复的潜在影响。(2007年)和其他方法一起,可以帮助减轻这些错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号