首页> 外文会议>Society of Petroleum Engineers Annual Technical Conference and Exhibition >Discrete Modeling of Natural and Hydraulic Fractures in Shale-Gas Reservoirs
【24h】

Discrete Modeling of Natural and Hydraulic Fractures in Shale-Gas Reservoirs

机译:页岩气藏自然液压骨折的离散建模

获取原文

摘要

Interconnections of hydraulic fractures and pre-existing natural fractures provide key channels for shale gas to flow at economic rates. Micro-seismic mapping has proved that the resulting fracture system is much more complex compared to most conventional reservoirs due to the massive multistage, multi-cluster hydraulic fracturing stimulations. It becomes crucially important to develop advanced approaches to model such a complex system to better understand the recovery mechanisms and to optimize stimulation and development plans of shale gas reservoirs. Recent advances in geological interpretations and micro-seismic mapping enable realistic modeling of hydraulic and pre-existing fracture network. Consequently, it is possible, to certain extent, to represent actual large-scale fracture distribution in reservoir modeling and simulation of shale gas development. In this paper, we apply the Discrete Fracture Modeling (DFM) approach to represent large-scale fractures individually and explicitly. This entails highly constrained unstructured gridding and construction of a connection (transmissibility) list of all neighboring cells. The geo-mechanical impact on micro-fracture system is modeled by “effective media”, in which the rock permeability is sensitive to the stress change induced by hydraulic fracturing and pressure drawdown. Simulations have been performed based on the detailed modeling of an actual shale gas reservoir with considering various mechanisms including adsorption/desorption, matrix-fracture transfer, and non-Darcy effects. Sensitivity studies by varying the production rate, pressure and hydraulic fracture parameters could be onducted to provide guidance on optimizing stimulation and production designs. We have proposed and implemented an innovative simulation workflow that effectively captures multi-scale and multi-physics flow behavior caused by complex fracture system and geo-mechanical impact. A field-scale case study demonstrates that the proposed workflow certainly improves predictability in development of shale gas reservoirs.
机译:液压骨折和预先存在的自然骨折的互连为页岩气以经济速率流动提供关键通道。微地震映射证明,与大多数传统储层相比,由于大量多级多簇液压压裂刺激相比,所得裂缝系统更复杂。为制定这种复杂的系统来更好地了解恢复机制并优化页岩气藏的刺激和开发计划来发展先进的方法是至关重要的。地质解释和微地震映射的最新进展使液压和预先裂缝网络的现实建模能够实现。因此,在一定程度上可以代表储层建模和页岩气体发展模拟中的实际大规模断裂分布。在本文中,我们应用离散断裂建模(DFM)方法单独和明确表示大规模骨折。这需要高度约束的非结构化网格和所有相邻单元格的连接(传输性)列表。微骨折系统的地理机械冲击由“有效介质”建模,其中岩石渗透率对液压压裂和压力拉伸引起的应力变化敏感。考虑到包括吸附/解吸,基质裂缝转移和非达到效应的各种机制,基于实际页岩气藏的详细建模进行了模拟。通过改变生产率,压力和液压骨折参数可以调节灵敏度研究,以提供有关优化刺激和生产设计的指导。我们已经提出并实施了一种创新的模拟工作流程,有效地捕获由复杂的骨折系统和地球机械冲击产生的多尺度和多物理流动行为。场刻度案例研究表明,所提出的工作流程肯定提高了页岩气藏的发展的可预测性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号