首页> 外文会议>Society of Photo-Optical Instrumentation Engineers Proceedings >In vivo Two-Photon Fluorescence Imaging with Cr:forsterite lasers Using Transgenic Lines Tagged by HcRed
【24h】

In vivo Two-Photon Fluorescence Imaging with Cr:forsterite lasers Using Transgenic Lines Tagged by HcRed

机译:在体内双光子荧光成像用Cr:使用通过HCRED标记的转基因株系的Forsterite激光器

获取原文

摘要

Transgenic lines carrying a specific tissue tagged by green-fluorescence-protein (GFP) have been a powerful tool to developmental biology because they encapsulate the expression of endogenous genes. Traditionally with two-photon fluorescence microscopy based on a femtosecond Ti:sapphire laser (with a wavelength between 700-980nm), green fluorescence can be excited by simultaneous absorption of two photons for high-resolution three-dimensional (3D) optical imaging. However for in vivo biological applications, Ti:sapphire-laser based optical technology presents several limitations including finite penetration depth, strong on-focus cell damage, and phototoxicity. For high optical penetration and minimized photodamages, two-photon imaging based on light sources with an optical wavelength located around the biological penetration window (~1300nm) is desired, where unwanted light-tissue interactions including scattering, absorption, and photodamages can all be minimized. Previous experiments around the optical penetration window indicated inefficient green fluorescence excitation of GFP through three-photon absorption. Red fluorescence protein is thus highly desired for future non-invasive in vivo two-photon imaging. Screening from embryos injected with DNA fragment containing a heart-specific regulatory element of zebrafish cardiac myosin light chain 2 gene (cmlc2) fused with HcRed gene, we generate a zebrafish line that has strong two-photon red fluorescence expressed in cardiac cells based on a 1230nm femtosecond light source working in the biological penetration window. Combined with its nonlinearity, high penetration depth, and minimized photodamages, this method provides superb imaging capability compared with the traditional GFP based two-photon microscopy, offering deep insight into the noninvasive in vivo studies of gene expression in vertebrate embryos.
机译:携带由绿色荧光 - 蛋白(GFP)标记的特定组织的转基因系是发育生物学的强大工具,因为它们包封了内源基因的表达。传统上具有基于飞秒Ti的双光子荧光显微镜:蓝宝石激光(波长在700-980nm之间),通过同时吸收两种光子,可以激发绿色荧光,用于高分辨率三维(3D)光学成像。然而,对于体内生物应用,Ti:基于Sapphire-Laser的光学技术呈现了几个限制,包括有限渗透深度,强焦的细胞损伤和光毒性。对于高光学穿透和最小的光电胺,需要基于具有位于生物穿透窗口(〜1300nm)的光波长的光源的双光子成像,其中包括散射,吸收和光电模具的不需要的光组织相互作用。都可以最小化。在光学穿透窗口周围的先前实验指示通过三光子吸收的GFP的效率低下。因此,对于在体内两光子成像中的未来非侵入性,因此非常需要红色荧光蛋白。从注射含有斑马鱼心肌霉菌菌丝菌丝肌肌蛋白轻链2基因(CMLC2)的心脏特异性调节元素的DNA片段的胚胎筛选,我们生成斑马鱼系,该系列基于A的心脏细胞表达强的双光子红荧光。 1230nm femtosecond光源在生物渗透窗口工作。结合其非线性,高穿透深度和最小化的光电模块,该方法与传统的GFP的双光子显微镜相比,提供了极好的成像能力,提供了深入了解脊椎动物胚胎中基因表达的非侵入性的非侵入性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号