首页> 外文会议>Society of Petroleum Engineers annual technical conference and exhibition >Numerical Simulation of the Storage of Pure CO2 and CO2-H2S Gas Mixtures in Deep Saline Aquifers
【24h】

Numerical Simulation of the Storage of Pure CO2 and CO2-H2S Gas Mixtures in Deep Saline Aquifers

机译:深盐含水层纯二氧化碳和CO2-H2S气体混合物储存的数值模拟

获取原文

摘要

We have studied strategies for maximizing several phenomena beneficial to large-scale subsurface storage of waste gases such as CO2 and H2S. Numerical simulations using a compositional reservoir simulator were carried out for 10,000 years to understand the flow and long-term storage potential of pure CO2 and CO2-H2S mixtures in deep saline aquifers. Hysteresis in the relative permeability curve results in substantial volumes of gas trapping. Aquifer characteristics such as heterogeneity, dip angle and vertical to horizontal permeability ratio were varied to determine their effect on storage potential and injectivity of a CO2-H2S gas mixture. The opportunity for escape of the gases from the aquifer can be minimized by careful design of injection strategies. One such strategy is to use horizontal wells low in the formation so that all of the injected gases are trapped, dissolved or precipitated before they reach geological seals and/or faults. This allows significantly larger volumes of waste gases to be stored in a given aquifer. Preferential solubility of the H2S in brine reduces the distance H2S travels relative to CO2. Simulations with local grid refinement show that fingering due to buoyancy is mitigated by natural heterogeneity in the aquifer petrophysical properties. Thus the amount of gas trapping observed in coarse-grid simulations is likely to be a reasonable estimate of what can be obtained in the field. Three-dimensional simulations of coupled flow and reactive transport showed that the amount of CO2 sequestered as minerals was small relative to gas trapping and dissolution into brine. However, the mineralization further reduces the already small amount of mobile gas over long periods of time.
机译:我们研究了最大化几种现象的策略,这些现象有利于大规模地下储存的废气,如CO2和H2S。使用组成储层模拟器的数值模拟进行了10,000年,以了解纯二氧化碳和CO2-H2S混合物的流动和长期储存潜力在盐水含水层中。相对渗透性曲线中的滞后导致大量的气体捕获量。含水层特性,如异质性,倾角和垂直渗透率,以确定它们对CO 2-H 2 S气体混合物的储存电位和注射性的影响。通过仔细设计注射策略,可以最大限度地减少从含水层逃离气体的机会。一种这样的策略是在地层中使用水平孔,使得所有注入的气体被捕获,溶解或沉淀到达地质密封和/或故障之前。这允许储存在给定的含水层中的显着大量的废气量。 H2S在盐水中的优先溶解度降低了相对于CO2的距离H2S。利用本地电网细化的模拟表明,由于含水层岩石物理特性的天然异质性而减轻了由于浮力引起的指令。因此,在粗栅模拟中观察到的气体俘获量可能是可以在该领域获得的可合理估计。偶联流动和反应性的三维模拟表明,作为矿物的CO 2的量相对于气体捕获和溶解成盐水。然而,矿化进一步在长时间内减少了已经少量的移动气体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号