首页> 外文会议>International Conference of Computational Methods in Sciences and Engineering >A Self-consistent First-principle Based Approach to Model Carrier Mobility in Organic Materials
【24h】

A Self-consistent First-principle Based Approach to Model Carrier Mobility in Organic Materials

机译:一种自我一致的第一原理基于原理的有机材料模型载体移动性的方法

获取原文

摘要

Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.
机译:通过薄的有机膜的无定形,在OLED和OPV中利用传输,已通过使用从头计算方法一直以模型的一个挑战。载流子迁移的障碍实力和重组能,这两者都是显著的影响在每个分子的环境细节强烈依赖。这里,我们提出一个多尺度方法来描述,其中使用矿床,基于蒙特卡罗原子模拟方法中,或者,可替代地通过计算用GROMACS进行分子动力学产生的材料形态流子迁移率。从这个形态,我们提取材料特定跳频速率,以及使用全自洽嵌入方法来计算电子结构参数现场能量,然后将其在用于载流子迁移的解析表达式使用。我们采用此策略来计算一组广泛研究分子的载流子迁移,并获得实验和理论之间良好的一致性在不同的流动性几个数量级,没有任何自由调节参数。工作的重点是多尺度的工作流程的量子力学的步骤,解释了最近发表的优化工作流程,结合密度半经验紧密结合的办法功能沿概念。其次是在解析公式及其既定的渗透配合以及动力学蒙特卡罗数值方法的协议的讨论。最后,我们skatch一个统一的多学科的方法,集成了材料科学模拟和高性能计算,欧盟项目MMM @ HPC内发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号