首页> 外文会议>International Petroleum Technology Conference >Evaluation of Borehole Casing Sources for Electromagnetic Imaging of Deep Formations
【24h】

Evaluation of Borehole Casing Sources for Electromagnetic Imaging of Deep Formations

机译:深层电磁成像的钻孔外壳源评价

获取原文

摘要

Electromagnetic(EM)methods hold considerable promise for differentiating and mapping fluids in hydrocarbon reservoirs.Specifically,the presence of hydrocarbons or carbon dioxide(CO2)produces regions of higher electrical resistivity than regions where saline water is present.Time-lapse EM measurements have demonstrated the capability for gas injection(Wright et al.2002),water flood(Wilt and Morea 2004)and CO2 injection(Bergmann et al.2012)reservoir monitoring. A limitation of EM methods deployed at the surface is their depth of investigation.This is addressed in crosswell EM(Xwell EM)(Wilt et al.1995)and borehole to surface EM(BSEM)(He et al.2012)by locating magnetic and electric sources,respectively,at depth within a borehole.However,the deployment of both Xwell EM and BSEM require costly downhole wireline conveyance and are significantly impacted by the presence of a well casing,requiring preferentially the use of at least one open hole well for satisfactory performance. An innovative approach is to use a borehole casing to provide a way to introduce an electric current into the earth at a considerable depth.One or more remote surface electrodes,located away from the well at a radial distance of approximately the casing depth,are combined with a casing to increase the current flowing in the subsurface at large offsets from the well.In this configuration,a conducting casing is actually an advantage when used in conjunction with an electric source. In this paper we discuss the effect of the casing conductivity and details of the well completion on the accuracy of the method.We compare variants of the new EM method in which a remote casing is used as one of the surface electrodes.To conclude,we quantify the signal produced by an injected fluid plume.
机译:电磁(EM)方法对碳氢化合物储层中的流体进行了相当大的承诺。特殊地,碳氢化合物或二氧化碳(CO2)的存在产生比存在盐水的区域更高的电阻率。时间流逝EM测量已经证明气体注射能力(Wright等人),水洪(Wilt和Morea 2004)和Co2注射(Bergmann等)储层监测。在表面上部署的EM方法的限制是它们的深度。这是通过定位磁的Crosswell Em(Xwert em)(Wilt等人)(Wilt等,Bsem)(He等)(He等人)的钻孔和电源分别在钻孔内。​​然而,XWER EM和BSEM的部署需要昂贵的井下电缆输送,并且通过井壳体的存在显着影响,优先使用至少一个开孔井为了满意的表现。一种创新的方法是使用钻孔壳体以相当大的深度向地线引入地球的方法。组合远离孔深度径向距离的远离井的井远离井的远离井的远程表面电极。通过壳体从井的大偏移中增加在地下​​流动的电流。在这种配置中,当与电源结合使用时,导电壳体实际上是有利的。在本文中,我们讨论了壳体电导率的影响和井完成的细节对方法的精度。我们比较新的EM方法的变型,其中远程壳体用作表面电极之一。结束,我们量化注入的流体羽流产生的信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号