首页> 外文会议>Iron Steel Technology Conference >Fluid Flow and Inclusion Motion in Continuous Casting Strands: Water Model, Numerical Simulation and Industry Measurement
【24h】

Fluid Flow and Inclusion Motion in Continuous Casting Strands: Water Model, Numerical Simulation and Industry Measurement

机译:连续铸造股中的流体流动和包涵体:水模型,数值模拟和行业测量

获取原文

摘要

Increasing the productivity and improving the product quality are permanent requirements concerning the continuous casting process. Plant observations have found that many serious quality problems, including inclusion entrapment, are directly associated with the flow pattern in the mold. Thus design and control of the fluid flow pattern in the continuous casting mold to remove inclusions is of crucial importance to the steel industry. The flow pattern in the mold can be controlled by many variables, including the nozzle and mold geometry, submergence depth, steel flow rate, argon injection rate, electromagnetic stirring, and flux layer properties. Nozzle technology is an easy and inexpensive way to optimize the fluid flow in the mold. New techniques involving the Submergence Entry Nozzle (SEN) to improve the fluid flow pattern and inclusion removal includes swirl nozzle technique, step nozzle technique, multiports nozzle, and oval offset bore throttle plate. The fluid flow in the continuous casting mold can be investigated by mathematical modeling, physical modeling, or industrial trials. Mathematical modeling is an effective, inexpensive tool to get information that cannot be directly measured in the steel. In the current study, industrial measurement of inclusions and total oxygen in a Low Carbon Al-killed steel are measured. A water model experiments are executed to investigate the level fluctuation with different gas flow rate, different casting speed, etc. Then the steady flow in the SEN and the strand of the continuous caster is simulated with a 3-D finite-difference computational model using the standard k-ε turbulence model in Fluent. Inclusion trajectories are calculated by integrating each local velocity, considering its drag and buoyancy forces. A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion.
机译:提高生产效率和改善产品品质是关于连铸工艺永久的要求。植物的观察发现许多严重的质量问题,其中包括包容滞留,直接在模具的流动模式有关。因此设计和在连续铸造模具中,以除去夹杂物中的流体流动模式的控制是对钢铁工业至关重要。在模具中的流动模式可以由许多变量,包括喷嘴和模具的几何形状,沉没度,钢的流速,氩气喷射率,电磁搅拌,并且焊剂层特性来控制。喷嘴技术是优化在模具中的流体流动一个简单和廉价的方式。涉及淹没水口(SEN)的新技术,以改善流体流动模式和夹杂物的去除包括旋流喷嘴技术,步骤喷嘴技术,多端口喷嘴,和椭圆的偏移孔节流板。在连续铸造模具中的流体流动可以通过数学建模,物理建模,或工业试验进行研究。数学建模是一种高效,廉价的工具来获取无法在钢材直接测量信息。在目前的研究中,在低碳铝镇静钢的夹杂物和总氧的工业测量被测量。一种水模型试验被执行以调查与不同的气体流率,不同铸造速度等,然后在SEN稳流和连铸机的链模拟与使用3 d有限差分计算模型电平波动标准k-ε紊流模型计算流利。纳入轨迹通过整合各地方的速度,考虑到它的阻力和浮力计算。 A“随机游走”模型被用于掺入湍流波动对粒子运动的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号