首页> 外文会议>American Chemical Society National Meeting >EVALUATION OF SOLUTION COMPOSITION ALUMINOBOROSILICATE WASTE GLASS DISSOLUTION AT 40°C
【24h】

EVALUATION OF SOLUTION COMPOSITION ALUMINOBOROSILICATE WASTE GLASS DISSOLUTION AT 40°C

机译:溶液组合物的评价在40℃下铝丙醇硅酸盐废玻璃溶解

获取原文

摘要

Successful application of Transition State Theory (TST) to the study of glass-water interactions and the prediction of the behavior of glass waste forms over geological time-scales requires an understanding of the fundamental chemical reactions that occur at the glass-water interface. These processes play an important role in determining the overall rate because, in accordance with TST, the overall rate is governed by the slowest elementary reaction. A TST-based chemical affinity rate law that relates the effect of solution composition on the dissolution rate of minerals has also been applied to glasses. But there is considerable debate concerning whether or not the chemical affinity based rate law or the protective layer model best describes the majority of the experimental results collected on the glass-water reaction. Glass is a thermodynamically unstable solid, as such, the glass-water reaction can never achieve a condition where the rate of dissolution and precipitation are equal (i.e., equilibrium). Because thermodynamic equilibrium can never be achieved, the ability to define or describe the observed decrease in the dissolution rate as the solution concentration of glass components increases poses an unique problem. Therefore, the debate over whether or not the observed decrease in the rate of glass dissolution can be attributed to the buildup of aqueous glass components (i.e., chemical affinity effect) or the formation of a protective gel layer must be addressed. The protective gel layer is an amorphous layer that forms as a result of aluminum and silicon condensation reactions that occur at the glass-water interface and results in the build up of reaction products on the glass surface. A series of single-pass flow-through (SPFT) experiments have been conducted on three aluminoborosilicate low-activity waste (LAW) glasses under conditions that vary from dilute to near-saturated with respect to glass components by altering the flow-through rate, q, to sample surface area, S. All experiments discussed in this paper were conducted at pH(23°C) = 9.0 and 40°C.
机译:转型状态理论(TST)的成功应用于玻璃 - 水相互作用的研究以及对地质时间尺度的玻璃废物形式的行为的预测需要了解在玻璃水界面处发生的基本化学反应。这些过程在确定整体率方面发挥着重要作用,因为,根据TST,总速率受到最慢的基本反应的管辖。基于TST的化学亲和率法律,溶液组合物对矿物质溶出速率的影响也已应用于眼镜。但是有关化学亲和力的汇率法或保护层模型的最佳描述是最能描述在玻璃 - 水反应上收集的实验结果的大大辩论。玻璃是一种热力学上不稳定的固体,因此,玻璃水反应永远不会达到溶解速率和沉淀速率等于(即,平衡)。因为永远无法实现热力学平衡,因为随着玻璃组分的溶液浓度的增加,定义或描述观察到的溶出速率的降低增加了姿势。因此,对玻璃溶解速率的观察到的降低是否可归因于含水玻璃组分(即化学亲和力效果)的累积或必须解决保护凝胶层的形成。保护性凝胶层是由于氧化铝和硅封闭反应而形成的非晶层,其在玻璃水界面处发生并导致玻璃表面上的反应产物的积聚。在通过改变流通速率的情况下,在三种铝丙醇硅酸盐低活性废物(Law)玻璃上进行了一系列单通流通(SPFT)实验。通过改变流动速率,从稀释到玻璃组分, Q,样品表面积,S。本文讨论的所有实验在pH(23℃)= 9.0和40℃下进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号