首页> 外文会议>Symposium on Fields, Networks, Computational Methods, and Systems in Modern Electrodynamics >Physical-Based Methods for Matrix Compression in Large Array Problems: A Unified View
【24h】

Physical-Based Methods for Matrix Compression in Large Array Problems: A Unified View

机译:大阵列中基于物理的矩阵压缩方法问题:统一视图

获取原文
获取外文期刊封面目录资料

摘要

In antennas and microwave applications, practical applicability of electromagnetic solvers still remains challenging in a variety of situations of definite industrial or scientific interest; typical large or otherwise complex array antennas, their beam forming networks (BFN), and many instances of MMIC structures are one of the most important such cases. It is to be observed that the scale of the numerical problem may arise from the overall electrical size of the structure under analysis (i.e, in terms of wavelengths) or be determined by the complicacy of its geometrical features. The epitomic example of electrically large structures is the radar cross section computation of large bodies like aircraft; MMIC or other circuits are a typical example of smaller structures with very fine details; full analysis of large array antennas, inter-antenna coupling in large satellites, and the prediction of antenna system performance on complex platforms exhibit a mixture of the two classes of problems. This situation has prompted an active research on ways to reduce the numerical load required to solve large scale problems in terms of numerical complexity and of memory occupation, and this is a very active research field; we will begin with a cursory overview of these efforts. It is to be noted that we are not striving for completeness or citation fairness in describing the existing techniques, but rather we will analyze them in order to set the stage for the present discussion; therefore, only the features that are pertinent to the proposed methods will be mentioned, and only the literature most pertinent to this work is cited; as a consequence, the statement "and references therein" should be applied, to all cited works. To set the terminology, we will call "order of the problem" the number of unknowns required in the standard MoM solution to obtain the desired accuracy in the final outcome of the code (which varies greatly for antenna and scattering problems, the latter requiring a much "softer" description of the near field); in this work we will consider only the methods based on the Integral-Equation (IE)-Method of Moments (MoM) approach.
机译:在天线和微波应用中,电磁溶剂的实际适用性仍然在各种明确的工业或科学兴趣的情况下仍然具有挑战性;典型的大或以其他方式复杂的阵列天线,它们的光束形成网络(BFN)以及MMIC结构的许多情况是最重要的这种情况之一。应观察到,数值问题的规模可能来自在分析下的结构的整体电尺寸(即,在波长方面)或通过其几何特征的复杂性来确定。电力大结构的延伸示例是雷达横截面计算,如飞机这样的大型体; MMIC或其他电路是具有非常精细的细节的较小结构的典型示例;大型阵列天线,大型卫星间天线耦合的完全分析,以及复杂平台上的天线系统性能的预测表现出两类问题的混合。这种情况促使有关减少在数值复杂性和记忆占用方面解决大规模问题所需的数值载荷的方法的积极研究,这是一个非常活跃的研究领域;我们将从这些努力的练习概述开始。值得注意的是,我们在描述现有技术时不争取完整性或引用公平性,而是我们将分析它们,以便为目前的讨论设定阶段;因此,只提到与所提出的方法相关的特征,并且只引用了与这项工作中最相关的文献;因此,应申请声明“和其中的参考”,所有被引用的作品。为了设置术语,我们将调用“问题的顺序”标准MOM解决方案所需的未知数数量,以获得代码的最终结果中所需的准确性(这对于天线和散射问题而异,后者需要一个近场的“更柔和”描述);在这项工作中,我们将仅考虑基于积分方程(IE)的方法 - 瞬间(妈妈)方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号