首页> 外文会议>International Conference on Shape Memory and Superelastic Technologies >STRESS-INDUCED MARTENSITIC TRANSFORMATIONS AND SHAPE MEMORY AT NANOMETER SCALES
【24h】

STRESS-INDUCED MARTENSITIC TRANSFORMATIONS AND SHAPE MEMORY AT NANOMETER SCALES

机译:纳米尺度的应力诱导的马氏体变换和形状记忆

获取原文

摘要

Nickel-titanium (NiTi) shape memory alloys undergo relatively large recoverable inelastic deformations via a stress-induced martensitic phase transformation. Although stress-induced phase transformations in shape memory alloys are well characterized and utilized at micrometer to meter length scales, significant opportunity exists to understand and exploit martensitic transformations at nanometer scales. Displacive stress-induced martensitic phase transformations may constitute an ideal nanometer scale actuator, as evident in certain biological systems, such as the T4 bacteriophage. The present work uses nanoindentation to study the fundamentals of stress-induced martensitic phase transformations in NiTi shape memory alloys. The experimental results presented in this study are the first to show evidence of discrete forward and reverse stress-induced thermoelastic martensitic transformations in nanometer scaled volumes of material. Shape recovery due to indentation, followed by subsequent heating, is demonstrated for indents depths in the sub 10 nm range. The indentation results reveal that stress-induced martensitic phase transformations nucleate at relatively low stresses at nanometer scales, suggesting a fundamental departure from traditional size scale effects observed in metals deforming by dislocation plasticity. It is also shown that the local material structure can be utilized to modify transformation behavior at nanometer scales, yielding insight into the nature of stress-induced martensitic phase transformations at small scales and providing opportunity for the design of nanometer sized NiTi actuators.
机译:镍 - 钛(NITI)形状记忆合金通过应力诱导的马氏体相转化经历相对较大的可回收非弹性变形。尽管形状记忆合金中的应力诱导的相变性具有很好的表征和在千分尺处用于计量计的长度尺度,但有重大的机会以了解和利用纳米尺度的马氏体变换。流离性应激诱导的马氏体相变可以构成理想的纳米级致动器,如某些生物系统中所示,例如T4噬菌体。本作本作使用纳米endentation研究Niti形状记忆合金中应力诱导的马氏体相变的基础。本研究中提出的实验结果是第一个显示在纳米缩放体积的材料中离散和反向应力诱导的热弹性马氏体变换的证据。由于压痕而形成的形状恢复,然后进行随后的加热,用于亚10 NM范围内的缩进深度。压痕结果表明,应力诱导的马氏体相变在纳米尺度的相对低应力下成核,表明在通过位错可塑性的金属变形中观察到的传统规模效应的基本偏离。还示出了局部材料结构可用于修改纳米尺度的变换行为,从小尺度处产生应力诱导的马氏体相变性的性质,并为纳米尺寸的Niti执行器提供机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号