【24h】

Numerical simulation of the fuel-oil cooling in the sunken Prestige tanker

机译:沉肯望远舰船燃油冷却的数值模拟

获取原文

摘要

This paper presents and discusses the predictions of the cooling rates of the fuel-oil contained in the tanks of the sunken Prestige tanker. These predictions were obtained through the numerical simulation of the time-evolution of the natural convection flow in the tanks and through the solution of the simplified macroscopic thermal energy balances. The physical model of the problem consists in a two-dimensional cross section of the tanker with two tanks. Initially the fuel-oil is considered to be at rest and at constant temperature (T_i=50°C) and the temperature of the external walls is set constant through the cooling process (T_w=2.6°C). The conventional Boussinesq approximation is adopted. The strong viscosity dependence on temperature of the fuel-oil (μ=500 Pa·s at T=3.1°C μ=0.85 Pa·s at T=50°C) is considered as well. The initial high Rayleigh (Ra≈10~(13)) and Prandtl (Pr≈10~8) numbers involved and the overall duration of the cooling process, which is of order of months, impose severe computational requirements for the numerical simulation of the complete time evolution in terms of grid sizes, time-step and total integration time. The numerical simulation shows that during the initial cooling period (t<45 days) the flow is highly unsteady (10~(10)≥Ra≥10~(13)) and it is mainly governed by the interaction of the vertical boundary layers developed near the vertical walls of the tanks and the unstable stratification imposed near the top horizontal walls. The flow has a broadband of length scales that range from the thin thermal boundary layers of several millimeters of thickness to the large-scale recirculations of order of the dimensions of the tanks. The macroscopic thermal energy balances underpredict by about 7°C the averaged temperatures of the numerical simulation when the conventional correlations of natural convection flows for high Prandtl number fluids are used to compute the convective heat fluxes through the walls. These temperature differences are reduced down to 3°C using the heat transfer coefficients predicted by the numerical simulation.
机译:本文介绍并讨论了沉没的望远镜罐中包含的燃料油冷却速率的预测。通过数值模拟通过罐中的自然对流流动的时间演变的数值模拟来获得这些预测,并通过简化的宏观热能量余额的溶解。问题的物理模型包括有两个罐的油轮的二维横截面。最初,燃料油被认为是静止,并且在恒定温度(T_I = 50℃)下,外壁的温度通过冷却过程(T_W = 2.6°C)设定恒定。采用传统的Bousinesq近似。还考虑了对燃料油的温度的强粘度依赖性,也考虑在T = 50℃的T = 3.1℃= 0.85Pa·s处的燃料油(μ= 500Pa·s。初始高瑞利(RA≈10〜(13))和PRANDTL(PR≈10〜8)涉及的数量和冷却过程的总持续时间,该持续时间为月份,对数值模拟施加严重的计算要求在网格尺寸,时间步骤和总集成时间方面的完整时间演变。数值模拟表明,在初始冷却时段(T <45天)期间,流量高度不稳定(10〜(10)≥ra≥10〜(13)),主要由垂直边界层开发的相互作用管辖靠近罐的垂直墙壁和施加在顶部水平墙附近的不稳定分层。该流量具有长度尺度的宽带,该长度范围从薄的厚度的薄的热边界层到大规模再循环罐的尺寸的大规模再循环。宏观热能余额欠下约7°C的平均温度当高Prandtl数流体的自然对流流的传统相关性用于计算通过壁的对流热通量。使用数值模拟预测的传热系数,这些温度差异降低至3°C。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号