首页> 外文会议>Society of Petroleum Engineers Asia Pacific Oil Gas Conference and Exhibition >Geomechanical Assessments for Underground Gas Storage and CO2 Sequestration in Depleted Hydrocarbon Reservoirs
【24h】

Geomechanical Assessments for Underground Gas Storage and CO2 Sequestration in Depleted Hydrocarbon Reservoirs

机译:耗尽碳氢化合物储层中地下储气储存和CO2封存的地质力学评估

获取原文

摘要

Depleted hydrocarbon reservoirs are attractive targets for gas storage and CO2 disposal because of proven storage capacity and seal integrity, existing infrastructure, etc. Optimum well completion and injection design in depleted reservoirs would require understanding of important rock mechanics issues such as: 1) drillability and completion of new wells, 2) maximum sustainable storage pressures avoiding fracturing and fault reactivations considering rock-fluid interaction effects. Building a field specific geomechanical model calibrated with well and production data is a pre-requisite for addressing these issues. Through a case study from a North Sea field, this paper demonstrates a systematic approach for geomechanical risk assessments for CO2 storage in depleted reservoirs. A depleted gas reservoir at 4,265ft depth with current pressure of 45psi is considered in this study for CO2 sequestration. Historical well and production data are used for geomechanical modellings and defining the change of earth stresses associated with depletion and injection. Analyses show that because of the low fracture gradient within the depleted sandstone reservoir and the presence of non-depleted overburden shale, the inclination angle for new injectors should be kept below 50° to avoid hole failure or mud losses. Field data and analytical sanding evaluations indicate no sand control installation would be needed for injectors. Fracturing and faulting assessments confirm that the critical pressures for fault reactivation and fracturing of intact rocks are, far beyond the planned CO2 injection and storage pressures up to the original pressure 1,962 psi; hence no leakage due to faulting or fracturing is expected over the life of CO2 storage. The methodology and overall workflow presented in this paper is expected to assist well engineers and geoscientists with geomechanical assessments for optimum well completion and injection design for gas and CO2 storage in depleted reservoirs.
机译:耗尽的碳氢化合物储层是储气和二氧化碳处理的有吸引力的储气目标,因为验证的储存能力和密封完整性,现有的基础设施等。最佳的耗尽水库中的最佳井完成和注射设计将需要了解以下是:1)可钻取的重要岩石力学问题完成新井,2)最大可持续储存压力避免考虑岩石流体互动效应的压裂和故障再活化。构建具有井校准的特定地质机制模型,生产数据是解决这些问题的先决条件。通过北海领域的案例研究,本文展示了对耗尽水库中CO2储存的地质力学风险评估的系统方法。在本研究中考虑了在该研究中考虑了4,265英尺深,在4,265英尺深度下,在该研究中考虑了CO2封存的研究。历史良好和生产数据用于地质力学调制,并定义与耗尽和注射相关的接地应力的变化。分析表明,由于耗尽砂岩储层内的低断裂梯度以及非耗尽的覆盖物页岩,新注射器的倾斜角度应保持在50°以下,以避免空穴失效或泥浆损失。现场数据和分析砂光评估表明喷射器需要砂控制装置。压裂和故障评估证实,完整岩石的故障再激活和压裂的临界压力远远超出计划的二氧化碳注射和储存压力,直至原有压力1,962 psi;因此,在二氧化碳储存的寿命期间,预计不会导致断层或压裂导致的泄漏。本文提出的方法和整体工作流程有望帮助工程师和地球科学家与地质力学评估,以便在耗尽储层中的气体和二氧化碳储存的最佳井完成和注射设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号