首页> 外文会议>International Thermal Spray Conference and Exposition >A Laser Thermal Cycling Rig as a New Method to Characterize the Evolution of Coating Adhesion under Thermal Cycle
【24h】

A Laser Thermal Cycling Rig as a New Method to Characterize the Evolution of Coating Adhesion under Thermal Cycle

机译:一种激光热循环钻机作为一种新方法,其在热循环下表征涂层粘附的演变

获取原文

摘要

Thermal sprayed coatings are often used for high temperature applications and, per se, are subjected to transient temperature gradients during operation. The recurrent temperature changes generate stresses that damage the coating with time, and can even lead to its delamination. The most common methods to evaluate coating behavior under thermal cycling are furnace testing or burner rigs. Both approaches cannot match the conditions reached in service for several applications, in term of the achievable heating rates for instance. As a consequence, a versatile and robust method to evaluate coating resistance to spalling under thermal cycles is still to be found. This paper presents the development of a thermal cycling rig where the heat input is provided by a laser. This rig allows easy testing of several samples jointly for heating rates as high as 55°C/s and for thousands of thermal cycles. Preliminary trials have allowed the development of different spalling criteria. Finally, it was found that SS430-based materials arc-sprayed on Al substrates exhibit higher delamination resistance (life) under rapid heating/cooling cycles than SS304 coatings on the same substrate. For such high heating rates, the thermal stresses generated in the coating would be more critical than the thermal mismatch at the interface coating/substrate.
机译:热喷涂涂层通常用于高温应用,并且本身是在操作期间经受瞬态温度梯度的。经常性温度变化产生损坏涂层的应力,甚至可以导致其分层。评估热循环下的涂层行为的最常用方法是炉子测试或燃烧器钻机。例如,在可实现的加热速率方面,这两种方法都不能匹配在若干应用中达到的若干应用程序。因此,仍然仍然发现在热循环下评估涂层抗剥落的多功能和鲁棒方法。本文介绍了热循环钻机的开发,其中热输入由激光提供。该钻机可以轻松地测试几个样品,用于加热速率高达55°C / s和成千上万的热循环。初步试验允许开发不同的剥落标准。最后,发现在Al底物上喷涂的基于SS430的材料在快速加热/冷却循环下在同一基板上的SS304涂层在快速加热/冷却循环下表现出更高的分层电阻(寿命)。对于这种高加热速率,在涂层中产生的热应力比界面涂层/基板的热失配更为关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号