首页> 外文会议>NATO Advanced Study Institute on Synthesis, Functional Properties Applications of Nanostructures >Electroplating and electroless deposition of nanostructured magnetic thin films
【24h】

Electroplating and electroless deposition of nanostructured magnetic thin films

机译:纳米结构磁性薄膜的电镀和无电沉积

获取原文

摘要

The dawn of nanoscale science can be traced to a now classic talk that Richard Feynman gave on December 29th, 1959 at the annual meeting of the American Physical Society at the California Institute of Technology. In this lecture, Feynman suggested that there exists no fundamental reason to prevent the controlled manipulation of matter at the scale of individual atoms and molecules. Twenty one years later, Eigler and co-workers [1] constructed the first man-made object atom-by-atom with the aid of a scanning tunneling microscope. This was just 7000 years after Democritus postulated atoms to be the fundamental building blocks of the visible world. A nanometer is thus the space occupied by 3-4 atoms placed end-to-end. Advances in the field have been accelerated following the invention by Binnig and Rohrer in the early 1980s of the scanning tunneling microscope [2]. This microscope, and its derivates, allows us to image and manipulate atoms, molecules and clusters in a controlled manner. It is this tool, which allows us, in a nano-workshop, to create and characterize individual structures whose dimensions are of the order of nanometers. It is forecast that many practical applications of nanotechnology will utilize massive an'ays of such fabrication tools, combined with self-assembly techniques borrowed from nature and the biosciences, to create large numbers of nanoscale objects and structures. As opposed to the microscale, the nanoscale is not just another step towards miniaturization, but is a qualitatively new scale. Here quantum and size phenomena are allowed to manifest themselves either at a purely quantum level or in a certain "admixture" of quantum and classical components. At the foundation of nanosystems lie the quantum manifestations of matter that become relevant and measurable. Consequently, instead of being a limitation or an elusive frontier, quantum phenomena have become the crucial enabling tool for nanotechnology [3].
机译:纳米科学的曙光可以追溯到到现在经典的传言称,理查德·费曼介绍了1959年12月29日在美国物理协会在加利福尼亚技术研究所的年度会议。在本次讲座,费曼认为,不存在根本的原因,以防止物质的控制操作在单个原子和分子的规模。二十一年以后,Eigler和同事[1]构造有扫描隧道显微镜的辅助下,第一人造物体原子接一个原子。这是只生产7000年之后德谟克利特假设原子是可见的世界的基本构建块。因此纳米是由放置的端至端3-4原子所占据的空间。在该领域的进展已经被加速本发明通过Binnig和罗勒在扫描隧道显微镜[2]的80年代初以下。这种显微镜,及其衍生物,允许我们图像和操纵的原子,分子和簇以受控的方式。正是这种工具,它允许我们在纳米车间,创建和表征个别结构,其尺寸为纳米量级的。据预测,纳米技术的许多实际应用将利用这样的制造工具大规模an'ays,从大自然借来的自组装技术和生物科学相结合,创造大量的纳米级物体和结构。相对于微尺度下,纳米级不向小型化只是一个步骤,但它是一个质的新规模。这里量子和大小现象在纯粹的量子能级或量子和经典部件的一定的“混合”要么允许显现出来。在纳米系统的基础在于物质的量子表现是成为相关的,可衡量的。因此,而不是被限制或一个难以实现的前沿,量子现象已经成为纳米技术[3]的关键使能工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号