首页> 外文会议>ASME Turbo Expo >A NOVEL APPROACH TO THE OPTIMISATION OF REACTION RATE PARAMETERS FOR METHANE COMBUSTION USING MULTI-OBJECTIVE GENETIC ALGORITHMS
【24h】

A NOVEL APPROACH TO THE OPTIMISATION OF REACTION RATE PARAMETERS FOR METHANE COMBUSTION USING MULTI-OBJECTIVE GENETIC ALGORITHMS

机译:一种新的多目标遗传算法优化甲烷燃烧反应速率参数的新方法

获取原文

摘要

This study uses a multi-objective genetic algorithm to determine new reaction rate parameters (A's, β's and Ea's in the non-Arrhenius expressions) for the combustion of a methane/air mixture. The multi-objective structure of the genetic algorithm employed allows for the incorporation of both perfectly stirred reactor and laminar premixed flames data in the inversion process, thus enabling a greater confidence in the predictive capabilities of the reaction mechanisms obtained. Various inversion procedures based on reduced sets of data are investigated and tested on methane/air combustion in order to generate efficient inversion schemes for future investigations concerning complex hydrocarbon fuels. The inversion algorithms developed are first tested on numerically simulated data. In addition, the increased flexibility offered by this novel multi-objective GA has now, for the first time, allowed experimental data to be incorporated into our reaction mechanism development. A GA optimised methaneair reaction mechanism is presented which offers a remarkable improvement over a previously validated starting mechanism in modelling the flame structure in a stoichiometric methane-air premixed flame (http://www.leeds.ac.uk/ERRI/research/res.html). In addition, the mechanism outperforms the predictions of more detailed schemes and is still capable of modelling combustion phenomena that were not part of the optimisation process. Therefore, the results of this study demonstrate that the genetic algorithm inversion process promises the ability to assess combustion behaviour for fuels where the reaction rate coefficients are not known with any confidence and, subsequently, accurately predict emission characteristics, stable species concentrations and flame characterisation. Such predictive capabilities will be of paramount importance within the gas turbine industry.
机译:该研究使用多目标遗传算法来确定甲烷/空气混合物的燃烧的燃烧新的多目标遗传算法(Aβ的,β和ea的非arrhenius表达中)。所采用的遗传算法的多目标结构允许在反转过程中掺入完美搅拌的反应器和层流预混的火焰数据,从而使得对所获得的反应机制的预测能力提高了更大的置信能力。研究并在甲烷/空气燃烧上研究了基于减少数据组的各种反转程序,以产生有效的复合烃燃料的研究。开发的反演算法首先在数值模拟数据上进行测试。此外,本新型多目标GA提供的增加的灵活性现在,首次允许将实验数据纳入我们的反应机制开发中。介绍了GA优化的甲基反应机理,其提供了通过在化学计量甲烷 - 空气预混火焰(http://www.leeds.ac.ac.uk/erri/research/res)中建模火焰结构的先前验证的起始机制的显着改善.html)。此外,该机制优于更详细的方案的预测,并且仍然能够建模不属于优化过程的燃烧现象。因此,该研究的结果表明,遗传算法反演过程的能力承诺评估燃料的燃烧行为的能力,其中反应速率系数未被任何置信度,随后,准确地预测排放特性,稳定物种浓度和火焰表征。这种预测能力将在燃气轮机行业内至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号