首页> 外文会议>Geothermal Resources Council Annual Meeting >Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir
【24h】

Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

机译:矿物缩放和粘土肿胀在裂缝地热储层中的注射效应的数值模拟

获取原文

摘要

A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.
机译:热干岩(HDR)和热裂缝岩石(HFR)储存器的开发的主要关注是实现和维持足够的注射性,同时避免开发优先的短路流动路径,例如由热引起的应力开裂引起的那些。 HDR和HFR储层的过去分析倾向于主要关注水文(流量),传热和岩石力学之间的耦合。最近的研究表明,岩石流体相互作用和相关的矿物溶解和降水效应可能对HFR储层的长期性能产生重大影响。本文采用近期欧洲研究作为探索HFR系统中的流体循环效果的起点。我们研究了可以修饰重新喷射水的化学成分以通过维持甚至增强注射性来改变重新喷射水的化学成分以改善储层性能。这里考虑的化学操作包括用淡水的pH改性和稀释。我们进行了耦合热水文学 - 化学模拟,其中裂缝介质由一维MINC模型(多相相互作用)表示,使用非等温多相反应性地球化学运输代码牙膏。结果表明,改变注射水化学可以增强矿物溶解并减少粘土溶胀。岩石和液体之间的化学相互作用将随着时间的推移而改变HFR储层,有一些变化有利和其他不变。详细的,对过程和机制的详细的定量理解可以提出水库管理的化学方法,可以采用来改善地热系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号