首页> 外文会议>AIChE Annual Meeting >Semi Analytical Solution of a Heat Transfer and Kinetic Models Applied in a Biomass Pyrolysis Reactor
【24h】

Semi Analytical Solution of a Heat Transfer and Kinetic Models Applied in a Biomass Pyrolysis Reactor

机译:施加在生物质热解反应器中的传热和动力学模型的半分析解

获取原文

摘要

Currently, fuels renewal and innovation has been intensively investigated by scientific community. Nevertheless, thermal cracking (pyrolysis) is considered a promising technique in biofuels production. This paper proposes a semi analytical solution of a mathematical model for heat transfer and chemical conversion phenomena applied to a biomass pyrolysis reactor. Equations set were solved through the Finite Analytical Method. Thus, it was possible to incorporate the non-linear terms in the solution and develop a numerical procedure in which time interval can be made arbitrarily small without stability and convergence problems. The thermochemical process is a decomposition reaction (reduction) occurring at higher temperatures, in an environment quasi or deoxygenated – a rupture of the original molecular structure of a given compound or mixture by heating. This is self-sustaining from an energy standpoint, since the ‘break’ in a waste processing reactor produces surplus energy. The biomass pyrolysis reactor was simulated, based on works of heat and mass transfer models and solved by Walas [1959] and modified by Leung et al. [1965] and also in the studies of Bertoli [2000], Meier et al. [2009] and Wiggers et al. [2009]. Steady-state, uniform average temperature, adiabatic reactor, inert particles, first-order reactions were the simplifying hypothesis of the mathematical model. The semi analytical solution was realized considering the nonlinearity of the equations system by partitioning the reactor in finite intervals; the linear terms remains and the non-linear are made constant in the intervals. Finite Analytical Method is based on the numerical solution incorporating a local solution of the partial or ordinary differential equations. For data comparison (semi analytical versus numerical solutions) Runge-Kutta-Fehlberg routine was used. The proposed method was successfully applied and the results between semi analytical and numerical solutions agree with minimum error values.
机译:目前,科学界已经集中调查了燃料续展和创新。然而,热裂化(热解)被认为是生物燃料生产中有希望的技术。本文提出了一种用于传热和化学转化现象的数学模型的半分析解决方案,施加到生物质热解反应器中。通过有限的分析方法解决方程组。因此,可以在解决方案中纳入非线性术语,并开发一个数字过程,其中可以在没有稳定性和收敛问题的情况下任意小的时间间隔。热化学过程是在较高温度下发生的分解反应(还原),在较高温度下,环境准或脱氧 - 通过加热发生给定化合物或混合物的原始分子结构的破裂。这是从能量立场自我维持的,因为废物处理反应堆中的“突破”产生剩余能量。基于热量和传质模型的作品模拟生物质热解反应器,并由沃拉斯解决并由Leung等人进行修饰。 [1965]以及在Bertoli的研究[2000],Meier等。 [2009]和Wiggers等人。 [2009]。稳态,均匀的平均温度,绝热反应器,惰性颗粒,一阶反应是简化数学模型的假设。通过在有限间隔以有限间隔分隔反应器来实现半分析解决方案,考虑方程式系统的非线性;线性术语保留并且非线性在间隔内恒定。有限分析方法基于包含部分或常微分方程的局部溶液的数值溶液。对于数据比较(半分析与数值解决方案)使用runge-Kutta-Fehlberg常规。建议的方法已成功应用,半分析和数值解决方案之间的结果与最小误差值一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号