首页> 外文会议>World congress on powder metallurgy particulate materials >SHAPING OF MASSIVE BILLETS FROM THE NANO-PARTICLES
【24h】

SHAPING OF MASSIVE BILLETS FROM THE NANO-PARTICLES

机译:从纳米粒子塑造大型坯料

获取原文

摘要

There is a known method of production of the highly dense billets from the powders with the initial size of particles within less than 200 nanometers that is based on the severe shear deformations at the pressures 5 to 10 GPa. However, such conditions are provided only in the relatively thin layer of the powder, which constrains the practical and technological use of this method. In this paper we give the results of cold isostatic and non- isostatic pressing. Billets possessing high level of mechanical properties have been obtained at the certain conditions from the powders with the average size of particles 30 nanometers. This method allows forming the billets whose height is bigger than the diameter. The majority of methods dealing with the production of massive ultrafine-grained nanostructured materials include compaction of initial ultrafine-dispersed powders. Until now, there are problems connected with development of practical methods to produce massive samples. One of the most effective methods is the powder torsion under a high pressure (fig. 1). The high density of a material in the samples is reached as a result of severe plastic deformation (SPD) of a powder by torsion under pressures 5... 10 GPa. However, such conditions are provided only in rather thin layer of a powder that limits this method applicability. Equal channel angular pressing (ECAP) method is known to be an effective way for the compaction of powders of plastic metals and alloys (fig. 2). To create the favorable compaction conditions and to maintain the technological plasticity of a material, the processing is carried out at the raised temperatures. For example, compaction of copper-silver powders' mixes was carried out at 300°N . At nano-size powders compaction, the temperature conditions of deformation should be controlled in view of their possible negative influence on the structure and properties of a material. In connection with the aforesaid, the opportunities to apply ECAP for the nano-size powders' compaction are also limited, especially for low-ductile and hard materials.
机译:存在已知的方法,从粉末中生产高度密集的坯料,颗粒的初始尺寸小于200纳米,其基于压力5至10GPa的严重剪切变形。然而,这种条件仅在相对薄的粉末层中提供,这限制了这种方法的实际和技术使用。在本文中,我们提供了冷等静压和非等静压的结果。在来自粉末的某些条件下,在具有30纳米的平均尺寸的粉末的某些条件下已经获得了具有高机械性能的坯料。该方法允许形成高度大于直径的坯料。处理大规模超细颗粒纳米结构材料的生产的大多数方法包括初始超细分散粉末的压实。到目前为止,有问题与生产巨大样本的实际方法的开发有关。最有效的方法之一是高压下的粉末扭转(图1)。通过在压力5.10GPa的压力下扭转粉末的严重塑性变形(SPD),达到样品中的材料的高密度。然而,这种条件仅在相当薄的粉末层中提供限制该方法的适用性。已知等沟道角压(ECAP)方法是塑料金属和合金粉末压实的有效方法(图2)。为了产生有利的压实条件并保持材料的技术可塑性,在凸起的温度下进行处理。例如,在300℃下进行铜 - 银粉末混合物的压实。在纳米尺寸粉末压实下,考虑到它们对材料的结构和性质的可能负面影响,应控制变形的温度条件。结合上述内容,将ECAP应用于纳米尺寸粉末压实的机会也有限,特别是对于低延展性和硬质材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号