首页> 外文会议>CEAS Aerospace Aerodynamics Research Conference >GARTEUR (AD) AG26: NAVIER-STOKES COMPUTATIONS OF 3D TRANSONIC FLOW FOR A WING/FUSELAGE CONFIGURATION
【24h】

GARTEUR (AD) AG26: NAVIER-STOKES COMPUTATIONS OF 3D TRANSONIC FLOW FOR A WING/FUSELAGE CONFIGURATION

机译:Garteur(广告)AG26:Navier-Stokes用于翼/机身配置的3D跨音速流量的计算

获取原文

摘要

In this paper the work carried out within the GARTEUR Action Group (AD) AG26 on the validation of computational fluid dynamics (CFD) methods for transonic flow around transport type of aircraft is presented. The participants of AG26 are Aerospatiale (AS), BAE SYSTEMS (BAe), EADS (DASA), NLR, ONERA and Saab. They simulated the flow around the AS28G wing/body configuration of Aerospatiale for a transonic design and an transonic off-design condition with their CFD methods based on the Reynolds averaged Navier-Stokes equations (Refs 3, 4, 8, 10-13) using a common computational grid that made available by BAe. Various turbulence models have been employed (Refs 2, 7, 9 and 14). A code-to-code comparisons has been made on the basis of computed aerodynamic force and moment coefficients, pressure distributions, skin friction coefficients, and boundary layer profiles. The pressure distributions have been compared with the experimental data obtained in the ONERA S1-Modane wind tunnel (Ref 5). Agreement between the computational and experimental pressure distributions is generally good except for the shock position end the region close to the wing trailing edge. There is a significant variation in computed aerodynamic force coefficients (attributed to variation in predicted shock position and separation locations) which could not systematically be related to the numerical method and turbulence models employed for this study. Even though it was expected that the off-design would be a more difficult case to predict, the variation in the computational results is more or less the same for both test cases. It is concluded among other things that the common computational grid did not allow to distinguish between discretisation error and modelling errors and it is recommended for future CFD validation studies to adopt a grid convergence approach rather than a common grid strategy.
机译:在本文中,介绍了展示了在运输类型的计算流体动力学(CFD)验证的Garteur行动组(AD)AG26上进行的工作。 AG26的参与者是航空用水(AS),BAE系统(BAE),EADS(DASA),NLR,ONERA和SAB。它们模拟了AS28G翼/机身配置的流动,用于跨音设计和基于Reynolds的CFD方法的跨音设计和跨音质的偏移设计条件,其基于Navier-Stokes方程(refs 3,4,8,10-13)使用由BAE提供的常见计算网格。已经采用了各种湍流模型(参考文献2,7,9和14)。已经基于计算的空气动力学力和时刻系数,压力分布,皮屑系数和边界层轮廓来进行码码比较。将压力分布与Onera S1-Modane风洞(REF 5)中获得的实验数据进行比较。除了靠近机翼后缘的区域之外,计算和实验压力分布之间的协议通常很好。计算出的空气动力系数(归因于预测的冲击位置和分离位置的变化)存在显着的变化,这不能系统地与本研究所采用的数值方法和湍流模型有关。尽管预期偏移将是一个更难以预测的难度,但对于两个测试用例来说,计算结果的变化也是或多或少相同。在其他事情中,共同计算网格不允许区分离散误差和建模错误,并且建议未来的CFD验证研究,以采用网格融合方法而不是共同的网格策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号