首页> 外文会议>ECS Meeting >Charge and Spin Doping in Epitaxial ZnO Thin Films and Nanostructures
【24h】

Charge and Spin Doping in Epitaxial ZnO Thin Films and Nanostructures

机译:在外延ZnO薄膜和纳米结构中充电和旋转掺杂

获取原文
获取外文期刊封面目录资料

摘要

ZnO is a remarkable semiconducting oxide material that presents opportunities in transparent electronics, UV photonics, nanoelectronics, and spintronics. A key element is to impose the desired functionality via heteroepitaxy and doping. In this talk, we will discuss the synthesis of epitaxial ZnO thin films and nanowires doped for charge and spin functionality. For spin functionality, the magnetic properties of transition metal doped epitaxial ZnO thin films will be described. For specific co-doping combinations, we find evidence for ferromagnetism with a Curie temperature approaching 300 K. The magnetization versus field behavior for an epitaxial Mn,Sn doped ZnO film shown in Fig. 1 clearly shows hysteresis, which is indicative of magnetism. Differences in zero field-cooled and field-cooled magnetization persists up to ~ 250 K. In doping for charge, the most significant issue is in achieving p-type conductivity. To this end, we will discuss recent studies of group V anion doping. In particular, the doping behavior of phosphorus in ZnO thin films grown by pulsed-laser deposition is examined. The transport properties of epitaxial ZnO films doped with 1 to 5 at.% P were characterized via room temperature Hall measurements. As-deposited films doped with phosphorus are highly conductive and n-type. The origin of the shallow donor level appears to be either substitution of P on the Zn site or formation of a donor complex. Annealing these phosphorus-doped films significantly reduces the carrier density, transforming the transport from highly conducting to semi-insulating. These results, shown in Fig. 2, indicate that the phosphorus-related donor defect is relatively unstable, and suggests the formation of a deep level upon annealing. The latter is consistent with phosphorus substitution on the O site yielding a deep level in the gap.
机译:ZnO是一种卓越的半导体氧化物材料,呈现透明电子,紫外线光子,纳米电子和熔纺物的机会。键元件是通过异质宽度和掺杂施加所需的功能。在这次谈话中,我们将讨论外延ZnO薄膜和纳米线的合成掺杂充电和旋转官能度。对于旋转功能,将描述过渡金属掺杂外延ZnO薄膜的磁性。对于特定的共同掺杂组合,我们发现与居里温度接近300k的铁磁性的证据。图1中所示的外延Mn,Sn掺杂ZnO膜的磁化与场行为。1清楚地显示滞后,其表示磁性。零场冷和现场冷却磁化的差异持续到〜250k。在掺杂时,最重要的问题是实现p型电导率。为此,我们将讨论最近对V阴离子兴奋剂的研究。特别地,检查通过脉冲激光沉积生长的ZnO薄膜中磷的掺杂行为。通过室温霍尔测量来表征掺杂1至5.%P的外延ZnO膜的运输性能。掺杂有磷的沉积薄膜是高导电和n型的。浅供体水平的起源似乎是p在Zn位点上的p或供体复合物的形成。退火这些磷掺杂的薄膜显着降低了载体密度,从高导电到半绝缘转化的运输。这些结果如图2所示。如图2所示,表明磷相关的供体缺陷相对不稳定,并且表明在退火时形成深度水平。后者与O位点上的磷取代一致,在间隙中产生深度水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号