首页> 外文会议>Performance Metrics for Intelligent Systems Workshop >Uncertain Predictions of Flow and Transport in Random Porous Media: The Implications for Process Planning and Control
【24h】

Uncertain Predictions of Flow and Transport in Random Porous Media: The Implications for Process Planning and Control

机译:随机多孔介质中流动和运输的不确定预测:对过程规划和控制的影响

获取原文
获取外文期刊封面目录资料

摘要

Traditional predictions of flow and transport in porous media are based on mass balance equations in the form of partial differential equations (PDEs), where the flux at every point is defined by Darcy's law, q=KVh, i.e., the flux is proportional to hydraulic head gradient, where K is the hydraulic conductivity of the medium (a tensor or a scalar; essentially, a material property); it is further assumed that Darcy's law applies to transient multiphase flow in three dimensions [14,26,36,55]. The solutions of these PDEs constitute groundwater models, oil reservoir simulators, geothermal models, and models of flow and transport in soils/vadosezone. Due to the similarity between the linear Darcy's law and Ohm's law in electricity, Fourier law in heat conduction, and Hooke's law in elasticity, such models (or PDE solutions) are similar and commonly interchangeable between these fields. Natural porous formations are heterogeneous, and display spatial variability of their geometric and hydraulic properties. This variability is of irregular and complex nature. It generally defies a precise quantitative description because of insufficient information on all relevant scales [9,18,26, 29,30,32,33,86,91]. In practice, only sparse measurements are available (limited by cost of drilling and monitoring). Under lack of exhaustive information, the higher the variability, the higher is the uncertainty. Geostatistics is commonly used to analyze and interpolate between measurements in mining and oil explorations, as well as hydrology and soil sciences, using methods such as "kriging", where the uncertainties in "krigged" values are also quantified [33,35,36,42,56-58,76,77,81,83,84,87, 104,105]. Frequently, these data are collected on different scales that may differ from the required scale of predictions. The task of quantitatively relating measurements and properties on different scales is difficult and intriguing [4,5,7,13,27,29, 30,38-40,46,59,78,86,91,101,108,109]. Lack of information in both observed results (output) and measured material properties (parameters) causes uncertain predictions. Spatial variability and uncertainty have lead engineers and geologists to use probabilistic theories that translate the uncertainty to a random space function (RSF) or a random field, consisting of an ensemble of (infinite number of) equally probable "realizations" of parameter values, all having the same spatial statistics, particularly correlation structure [107,76,77,23,33,35,36,42,56,58,83,84, 85,87,91]. Imbedded in this approach is a geostatistical model of an assumed joint pdf. In practice, only the first two moments are considered, with an underlying assumption of multivariate normal distribution; in particular, the theoretical semi-variogram (or simply, "variogram") - the reciprocal of the covariance function, and the mean and variance of the pdf. Since these joint moments are inferred from spatial data, the assumption of ergodicity (i.e., assuming that the ensemble and spatial statistics are identical - a theorem that cannot be proven on real data) must be invoked, which, in turn, implies some kind of stationarity (or statistical homogeneity) [33,35,36,49]. Further, in order to determine the variogram model from available spatial data, an inverse method has to be used to estimate the parameters of this variogram; sensitivity to data errors on one hand, and identifiability problems (of model parameters) on the other hand [81,87,104,105] lead to uncertainty in the geostatistical model itself, which is usually ignored (in fact, the common practice is to fit the variogram model to the experimental variogram by eye and by subjective judgement of model type, degree of stationarity (drift), and statistical anisotropy). Another ignored uncertainty is in the "measured" hydraulic conductivity value that are actually inferred from hydraulic tests interpreted by simplistic models that assume local homogeneity, which is somewhat inconsistent with the RSF app
机译:多孔介质中的流动和传输的传统预测基于部分微分方程(PDE)形式的质量平衡方程,其中每个点的通量由达西的法律定义,Q = KVH,即助焊剂与液压成比例头部梯度,其中k是介质的液压导电性(张量或标量;基本上,物质性质);进一步假设达西法律适用于三维的瞬时多相流[14,26,36,55]。这些PDE的解决方案构成了地下水模型,储油模拟器,地热模型和土壤/ vadosezone的流量和运输模型。由于线性达西法和欧姆的电力法律之间的相似性,傅立叶定律在热传导中,以及胡克的弹性定律,这种模型(或PDE解决方案)在这些领域之间具有相似且通常可互换。天然多孔形成是异质的,并显示其几何和液压性能的空间可变性。这种变异性是不规则和复杂的性质。它通常由于关于所有相关尺度的信息不足而忽略了精确的定量描述[9,18,26,29,30,32,33,86,91]。在实践中,只有稀疏测量可用(限制钻孔和监测的费用)。在缺乏详尽的信息下,变异性越高,不确定性越高。常用地质学习通常用于分析和插入采矿和石油勘探的测量和水性和土壤科学之间,使用诸如“克里格”的方法,其中“克里格格”值中的不确定性也量化[33,35,36, 42,56-58,76,77,81,83,84,87,104,105]。通常,这些数据被收集在不同的尺度上,这些数据可能与所需的预测比例不同。定量相关的测量和特性在不同尺度上的任务是困难和有趣的[4,5,7,13,27,29,30,38-40,46,59,78,86,91,101,108,109]。观察结果(输出)和测量材料特性(参数)缺乏信息导致不确定的预测。空间变异性和不确定性具有潜在的工程师和地质学家,可以使用将不确定性转化为随机空间函数(RSF)或随机字段的概率理论,由参数值的(无限数量)的集合组成,所有具有相同的空间统计,特别是相关结构[107,76,77,23,33,35,36,42,56,58,83,84,85,87,91]。在这种方法中嵌入是假设关节PDF的地质统计模型。在实践中,只考虑前两次,具有多元正态分布的潜在假设;特别地,理论半变形仪(或简单地,“变速仪”) - 协方差函数的倒数,以及PDF的平均值和方差。由于这些联合时刻被从空间数据推断出来,因此必须调用ergodicity的假设(即,假设集合和空间统计是相同的 - 必须调用在实际数据上的定理),这反过来又意味着某种实用性(或统计均匀性)[33,35,36,49]。此外,为了确定可用空间数据的变形仪模型,必须使用逆方法来估计该变形仪的参数;另一方面,对数据错误的敏感性,另一方面,标识性问题(模型参数)导致地质统计模型本身的不确定性,这通常被忽略(实际上,常见做法是适合变形仪模型通过眼睛的实验变速仪和模型类型的主观判断,具有统治性(漂移)和统计各向异性的程度。另一个忽略的不确定性是“测量”的水力电导率值,该液压导电性值实际上从液压试验中推断出通过假设局部同质性的简单模型来解释,这与RSF应用程序有些不一致

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号