【24h】

Progress and prospects in engineering crops for osmoprotectant synthesis

机译:工程杂粮综合工程作物的进展与展望

获取原文

摘要

Many plants accumulate organic solutes such as quaternary ammonium and tertiary sulfonium compounds, sugar alcohols and the amino acid proline in response to salinity and drought. There is strong experimental support for the hypothesis that accumulation of organic solutes is of adaptive significance. This is based on their distribution in species that evolved under stress habitats, their protective effects in bioassays, positive correlation between their levels and sap osmotic pressures under stress, their cytoplasmic location and more directly, stress protection of model organisms engineered to overproduce the solute. Since only some taxa accumulate osmoprotectants and many do not, attempts have been made to engineer non-accumulating plant species for osmoprotectant synthesis with the ultimate aim of improving stress tolerance. Synthetic pathways to sugar alcohols, amino acid proline and the quaternary ammonium compound glycine betaine have so far been manipulated in transgenic systems. Progress in this area is summarized with emphasis on engineering synthesis of glycine betaine and other quaternary ammonium compounds. Some stress protecton in transgenic plants accumulating even low levels of osmoprotectants suggests that there is potential for achieving better level of stress-tolerance by engineering stress-inducible over-production of the osmoprotectant. Analyses of transgenic plants indicate current metabolic constraints in achieving this and strategies for further rounds of engineering to overcome them. In general, the diversity for osmoprotectants in plants has been under-utilized compared to microbial genes. Diverse osmoprotectants in plants has been under-utilized compared to microbial genes. Diverse osmoprotectants in stress-tolerant plants present unique future opportunities and challenges for metabolic engineering both to improve stress tolerance in crops and to understand plant metabolism.
机译:许多植物积累了有机溶质,例如季铵和叔磺酸化合物,糖醇和氨基酸脯氨酸,响应盐度和干旱。对于有机溶质积聚具有适应性的假设存在强烈的实验支持。这是基于它们在物种中的分布,在压力栖息地下进化,它们在生物测定中的保护作用,其水平与SAP渗透压力之间的正相关性,其细胞质位置和更直接的模型生物的应力保护,以过度提出溶质。由于只有一些分类群积累Osmoplotectants,并且许多分类,因此已经尝试用于工程植物物种,用于渗透植物合成,具有改善应力耐受性的最终目的。到目前为止,已经在转基因体系中操纵糖醇,氨基酸脯氨酸和季铵化合物甘氨酸甜菜碱的合成途径。本领域的进展总结了强调甘氨酸甜菜碱和其他季铵化合物的工程合成。转基因植物中的一些应激保护率施加甚至低水平的渗透压剂表明,通过工程应力诱导的渗透剂诱导的渗透性过度产生巨大的应力耐受性潜力。转基因植物的分析表明,在实现这一和策略方面,对进一步回合的策略来克服它们的许可限制。通常,与微生物基因相比,已经利用了植物中渗透剂的多样性。与微生物基因相比,植物中的多种渗透剂已经过度使用。耐受性植物中的多种渗透剂为代谢工程提供了独特的未来机遇和挑战,以改善作物中的压力耐受性并理解植物代谢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号