首页> 外文会议>Materials Research Society Symposium >Modeling Laser Generated Shock Damage and Thermo-Mechanical Chaos in Nanoparticles
【24h】

Modeling Laser Generated Shock Damage and Thermo-Mechanical Chaos in Nanoparticles

机译:纳米粒子中的激光产生激光产生的冲击损伤和热机械混沌

获取原文

摘要

Continual advances in laser technology lead to shorter pulses and higher energies. As the duration of a laser pulse shortens, different physical mechanisms become important in determining the thermo-mechanical response of an absorbing particle. These thermomechanical responses fall into the general category of thermal heating (temperature rise), vaporization, and shock wave formation. Our theoretical work has produced a computational model that allows the quantitative calculation of all of these responses for a laser of any pulse duration or energy, absorbed by a particle of any size. We find that for relatively long pulses, particle damage occurs most easily, i.e. at the least pulse energy, due to thermal effects. As the pulse duration shortens, explosive vaporization can dominate as me primary damage mechanism. For short pulses, shock wave production becomes the dominant damage mechanism. We describe how the relative terms of "short" and "long" pulse duration can be determined from knowledge of the thermo-mechanical properties of the absorber. Conversely, when the thermo-mechanical properties are not known, we explain how our theoretical work leads suggests an experimental technique that allows measurement of these absorber properties. This technique is applicable to extremely small particles that present difficulties for thermo-mechanical measurements. Finally, we show computational evidence of chaotic behavioral response of the absorber. This results in some laser pulse durations and energies that cause anomalously small shock waves, whereas other durations and energies cause surprisingly large and damaging responses.
机译:激光技术的持续前进导致脉冲较短,能量更高。随着激光脉冲的持续时间缩短,不同的物理机制在确定吸收颗粒的热机械响应时变得重要。这些热机械响应落入了热加热(温度升高),汽化和冲击波形成的一般类别。我们的理论工作已经产生了一种计算模型,其允许通过任何尺寸的颗粒吸收的任何脉冲持续时间或能量的激光器的所有这些反应的定量计算。我们发现,对于相对长的脉冲,由于热效应,最容易发生粒子损坏,即在最小脉冲能中。随着脉冲持续时间缩短,爆炸性蒸发可以随着我的主要损伤机制占主导地位。对于短脉冲,冲击波产生成为主导损坏机制。我们描述了如何从吸收器的热机械性能知识确定“短”和“长”脉冲持续时间的相对术语。相反,当热机械性能尚不清楚时,我们解释了我们的理论工作引线如何建议一种允许测量这些吸收剂性能的实验技术。该技术适用于极小的颗粒,其呈现用于热机械测量的困难。最后,我们显示了吸收器的混沌行为应答的计算证据。这导致一些激光脉冲持续时间和能量导致异常小冲击波,而其他持续时间和能量会导致令人惊讶的大而受损的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号