首页> 外文会议>Transactions of the American foundrymen's society Conference >Multi-Length Scale Analyses of Cyclically Loaded A356 Cast Aluminum Alloy
【24h】

Multi-Length Scale Analyses of Cyclically Loaded A356 Cast Aluminum Alloy

机译:循环加载A356铸铝合金的多长度分析

获取原文

摘要

An A356 cast aluminum alloy is being used for automotive chassis components. The microstructure of this alloy is complex and varies over spatial length scales; often, the progression and synergistic cooperation of damage at various length scales eventually leads to final fatigue failure of the component. In this paper, a methodology is discussed in which finite element analyses are performed at different spatial length scales to characterize each of a range of mechanisms that are known to contribute to fatigue failure of A356. At each scale, appropriate continuum constitutive relations are used for the constituents. The microscale, which ranges from 1-40 #mu#m, focuses on assemblies of interdendritic silicon particles and microporosity associated with local shrinkage or particle fracture/debonding. The next scale is that of dendrite cell size, D_(cs) typically on the order of 40-100 #mu#m; gas porosity at this scale is also fairly common. The next is a mesoscale comprised of significant numbers of dendrite cells, but with shrinkage and gas pores with dimensions that may reach 150-500 #mu#m or more. A fatigue damage formulation is introduced that represents four different regimes: small crack incubation period, microstructurally small crack growth, physically small crack growth, and long crack growth. Mechanisms of crack incubation and growth at various microstructure scales differ according to their relative balance of incubation, small and long crack propagation. In some cases, certain regimes may be bypassed completely. Finally, an example methodology is outlined to assess the fatigue failure of a structural component (e.g., cm-m).
机译:A356铸造铝合金用于汽车底盘组件。该合金的微观结构复杂,在空间长度范围内变化;通常,各种长度尺度的损伤的进展和协同合作最终导致组分的最终疲劳失效。在本文中,讨论了一种方法,其中在不同的空间长度尺度下执行有限元分析,以表征已知有助于A356的疲劳失败的一系列机构。在每种规模,适当的连续组成部分关系用于组分。从1-40#mu#m范围的微观尺寸侧重于与局部收缩或颗粒骨折/剥离相关的蛋白质硅颗粒和微孔的组件。下一个比例是枝晶单元大小,D_(CS)通常约为40-100#mu#m的顺序;这种规模的气体孔隙度也很常见。接下来是一个由大量的枝晶细胞组成的阶级,但是具有可达到150-500#mm或更大的尺寸的收缩和气体孔。介绍了疲劳损伤制剂,其代表四种不同的制度:小裂缝培养期,微观结构小的裂纹生长,身体小的裂纹生长和长裂纹生长。各种微观结构尺度的裂纹孵化和生长的机制根据其孵育,小而长的裂纹传播的相对平衡而不同。在某些情况下,可以完全绕过某些制度。最后,概述了一个示例方法以评估结构组分(例如CM-M)的疲劳失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号