【24h】

Mechanisms causing capacity loss on long term storage in NiMH system

机译:导致NIMH系统长期存储容量损失的机制

获取原文

摘要

Capacity reover after long term storage and loaded storage is a critical issue with the NiMH system since its inception. A measurable loss in capacity is observed when cells are stored for long periods of time or discharged deeply to zero volts. The different mechanisms that are kwown to cause self discharge and capcity loss after storage and loaded storage will be the focus of this paper. Capacity loss after long term storage involves two main events. One is self dischare which causes the open circuit voltage(OCV) of the cell to drop. Self discharge is caused by decomposition of NiOOH, migration of metal ions and possible degradation of separator. Self discharge can be prevented by using separators which are stable at high temperatures and pH and have good ion trapping capability. Various separator types and treatments can play an important role ininhibiting metal ions from migrating thus reducing self discharge. Self discharge during storage causes a severe suppression in the voltage of the foam positive electrode. This drop in voltage causes a breakdown of the cobalt conductive network in the nickel positive electrode. Reduction of high valence cobalt(III) which forms the electrode's conductive network takes place at these low voltages. A permanent breakdown in the conductive network results in low efficiency of the cell on consecutive charge and discharge cycles. In addition, the cobalt in its lower valence states can migrate away from the electrode into the separator cusing shorts. These events effect the charge and discharge efficiency of these cells thereby resulting in capacity loss. Various mechanisms causing self discharge which affect capacity recovery after long term storage and loaded storage are discussed in this paper.
机译:长期存储和加载存储后的容量reove是自成立以来的NIMH系统的关键问题。当细胞长时间储存​​或深度放电到零伏时,观察到能力的可测量损失。储存后造成自放电和电容损失的不同机制将是本文的重点。长期存储后的容量损失涉及两个主要事件。一个是自我脱离,导致电池的开路电压(OCV)下降。自放电是由NiOOH的分解引起的,金属离子迁移和分离器的可能降解。通过使用在高温和pH下稳定的分离器可以防止自放电,并且具有良好的离子捕获能力。各种分离器类型和治疗可以在迁移中发挥重要作用,从而减少自放电。储存期间的自放电导致泡沫正电极的电压严重抑制。该电压下降导致镍正电极中的钴导电网络的击穿。在这些低电压下形成形成电极导电网络的高价钴(III)的减少。导电网络中的永久分解导致电池的低效率,在连续充电和放电周期上。此外,其下层级态的钴可以将远离电极迁移到分离器中。这些事件影响了这些细胞的电荷和放电效率,从而导致容量损失。本文讨论了导致自放电影响能力恢复的各种机制,在本文中讨论了长期储存和加载存储。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号