首页> 外文会议>ASME Internationnal Mechanical Engineering Congress and Exposition >Observation and prediction of damage evolution in continuous fiber titanuium matrix composites
【24h】

Observation and prediction of damage evolution in continuous fiber titanuium matrix composites

机译:连续纤维钛基复合材料的损伤演化观察与预测

获取原文

摘要

Titanium matrix composites (TMC's)are known to undergo significant environmental degradation at elevated temperatures. As a part of this research effort the TMC SCS-6/Ti-SS21S [0]{sub}4 has been fatigue tested at 482°C and 650°C. Additionalspecimens have been oxidized at 700°C and then fatigued at 482°C to failure. The life limiting physical mechanisms identified from the experiments are material inelasticity, surface embrittlement and subsequent surface cracking, fiber/matrix debonding,fiber-bridging, and eventual fiber failure.A model incorporating all of these physical phenomena has been developed in an ongoing effort by the authors. This model will be briefly presented herein. The model utilizes the finite element method coupled with models for material inelasticity, surface embrittlement, and crack propagation. Material inelasticity is predicted using Bodner's unified viscoplastic model. Crack propagation is modeled via the inclusion of cohesive zone elements. Surface embrittlement is accounted for through the degradation of material properties. Both monotonic and fatigue loadings have been modeled at 482°C and 650°C for oxidized and unoxidized specimens. Results indicate that surface crack propagation rates are significantly slower when matrix viscoplasticity is included inthe model instead of elasticity. Furthermore, surface cracking in degraded specimens enhances fiber stresses compared to undegraded specimens. This difference apparently causes premature failure of the degraded composite.
机译:已知钛基复合材料(TMC)在升高的温度下经历显着的环境降解。作为本研究的一部分,TMC SCS-6 / TI-SS21S [0] {SUB} 4在482°C和650℃下测试过疲劳。添加剂已经在700℃下氧化,然后在482℃下酸化至失效。从实验中鉴定的寿命限制了物理机制是物质间质,表面脆化和随后的表面裂化,纤维/基质剥离,纤维桥接和最终纤维失效。包含所有这些物理现象的模型是在持续的努力中开发的作者。本文将简要介绍该模型。该模型利用了有限元法,其耦合的材料无弹性,表面脆化和裂纹传播。使用BODNER的统一粘液模型预测了材料绝积性。通过包含粘性区域元素来建模裂缝繁殖。表面脆化通过物质性质的降解来占据占据。单调和疲劳载体均为482℃和650℃的模拟,用于氧化和未氧化的标本。结果表明,当模型而不是弹性时,在矩阵粘合性粘贴性时,表面裂纹传播速率显着较慢。此外,与未降解的样品相比,降解标本中的表面裂化增强了纤维应力。这种差异显然会导致降解复合材料的过早失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号