首页> 外文会议>ASME Pressure Vessels and Piping Conference >ELASTO-VISCO-PLASTIC BUCKLING OF THICK ANISOTROPIC SHELLS: NUMERICAL BUCKLING PREDICTIONS AND EXPERIMENTS
【24h】

ELASTO-VISCO-PLASTIC BUCKLING OF THICK ANISOTROPIC SHELLS: NUMERICAL BUCKLING PREDICTIONS AND EXPERIMENTS

机译:ELASTO-VISCO-PLASTION屈曲厚各向异性壳:数值屈曲预测和实验

获取原文
获取外文期刊封面目录资料

摘要

This work is focused on elasto-visco-plastic (EVP) buckling of thick shell structures. In particular we are interested in predicting accurately the buckling risk of stainless steel components of nuclear fast sodium reactor working under high pressure and at high temperature (around 180 bar and 500 °C). We follow a modeling/experimental approach to solve this problem. The set-up of relevant experiments at such high temperature being complex, we work with a representative material that shows similar EVP and buckling behavior at room temperature. The representative material is an alloy mostly composed of tin, silver and copper, commonly named Sn 3.0 Ag 0.5 Cu. The elasto-visco-plastic constitutive model of the material was first characterized using tensile tests on notched specimen at room temperature under various strain rates, and the model parameters identified using finite element model updating (FEMU). In a second step we performed in plane compressive buckling tests of thick plates for various displacement rates. Surface 3D displacements were acquired using three cameras and digital image correlation. It is well known for thick plates that linearized tangent moduli derived from Levy-Mises flow theory does not give accurate elasto-plastic buckling prediction. Linearized tangent moduli derived from Hencky 's deformation theory gives more accurate buckling prediction for thick plates. This numerical phenomenon known as buckling paradox was well correlated to experiments in the literature. This paradox is applied here to thick plates, with EVP constitutive model, in order to predict buckling. Finally, finite element (FE) modeling of the buckling experiments was performed. Plates are modeled using SHB8PS solid shell elements. Solid shell elements allow direct displacement correlation with experiments and accurate through the thickness behavior with a 3D material model. The numerical modeling includes real plate geometry obtained using post machining measurements, experimental boundary conditions derived from the DIC (Digital Image Correlation) results and the previously identified constitutive material law. Buckling risk is tested at each loading step of the incremental algorithm using the tangent operator derived with the Hencky's deformation theory. Numerical results show a very good correlation with the experimental results on load and displacement history as well as buckling critical load and buckling mode.
机译:这项工作主要集中在厚壳结构的Elasto-Visco-塑料(EVP)屈曲。特别是我们有兴趣准确预测核快速钠反应器的不锈钢组分的屈曲风险,在高压和高温下(约180巴和500℃)。我们遵循建模/实验方法来解决这个问题。在这种高温下的相关实验的设置是复杂的,我们使用在室温下显示出类似的EVP和屈曲行为的代表性材料。代表性材料是主要由锡,银和铜组成的合金,通常名为SN 3.0 Ag 0.5 Cu。首先使用各种应变速率下的室温下的缺口试样对缺口试验的弹性 - 粘塑料本构型模型,以及使用有限元模型更新(Femu)的模型参数。在第二步骤中,我们在厚板的平面压缩屈曲试验中进行,用于各种位移率。使用三个摄像机和数字图像相关来获得表面3D位移。厚板众所周知,源自征收误差流动理论的线性化正模块不适用于精确的弹性塑料屈曲预测。来自Hencky变形理论的线性化切数为厚板提供更准确的屈曲预测。这种称为屈曲悖论的数值现象与文献中的实验良好相关。此悖论在此处应用于厚板,具有EVP本构模型,以预测屈曲。最后,进行了屈曲实验的有限元素(Fe)建模。平板采用SHB8PS固体壳元素进行建模。实心壳元件允许与实验直接置换相关性,并通过与3D材料模型的厚度行为精确。数值建模包括使用后加工测量获得的真实板几何形状,从DIC(数字图像相关)结果和先前识别的本构体法导出的实验边界条件。使用与Hencky变形理论导出的切线算法的增量算法的每个加载步骤测试屈曲风险。数值结果表明,与负载和位移历史上的实验结果以及屈曲临界负载和屈曲模式的实验结果非常好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号