首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >(V010T13A029)COMPUTATIONAL STUDY ON A NOVEL MICROPUMP DRIVEN BY A BUILT-IN THERMAL BIMORPH MICRGVALVE
【24h】

(V010T13A029)COMPUTATIONAL STUDY ON A NOVEL MICROPUMP DRIVEN BY A BUILT-IN THERMAL BIMORPH MICRGVALVE

机译:(v010t13a029)由内置热双隅臂微凝视驱动的新微泵的计算研究

获取原文
获取外文期刊封面目录资料

摘要

Using the rarefied gas dynamic phenomenon of thermal edge flow, a micropump with a built-in thermal bimorph microvalve is proposed to provide pumping needs for systems such as micro fuel cells. A thermal bimorph cantilever used as a microvalve is located within one gas molecular mean free path away from a narrow flow channel, which connects two larger size connectors on either side. The sharp edge of the heated microvalve, whose length is several times of the gas molecular mean free path, can induce flows along its surface and into the narrow channel. Using the DSMC (Direct Simulation Monte Carlo) simulation technique, the thermal edge flow characteristics are studied computationally to determine the feasibility of the proposed design. The result for a closed simulation domains at steady state determined that a pressure ratio of 1.22 can be achieved by the proposed design. The average flow velocities in open simulation domains were found to be closely related to the heater location. This preliminary computational study has proven that with particular parameters, such as the microvalve's size and location, matching the gas mean free path, the proposed micropump with a built-in microvalve design appears to be viable to drive the thermal edge gas flows and create noticeable pressure difference to serve as a micropump.
机译:使用热边流量的稀土气动力现象,提出了一种具有内置热双模微光栅的微型泵,为微燃料电池等系统提供泵送需求。用作微型阀的热双模悬臂位于远离窄流动通道的一个气体分子平均值,其在任一侧连接两个较大尺寸的连接器。加热的微仪的尖锐边缘,其长度是气体分子平均自由路径的几次,可以沿其表面诱导流动并进入窄通道。使用DSMC(直接仿真蒙特卡罗)仿真技术,计算地研究了热边流量,以确定所提出的设计的可行性。在稳态处的闭合仿真结构域的结果确定了通过提出的设计可以实现1.22的压力比。发现开放仿真域中的平均流速与加热器位置密切相关。这项初步计算研究证明,具有特殊参数,例如微型阀的尺寸和位置,匹配气体均值的自由路径,具有内置微型阀设计的提出的微泵似乎是可行的,以驱动热边缘气流并产生显着的压力差用用作微泵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号