首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >THE EFFECTS OF NECK STIFFNESS PROPERTIES ON BRAIN RESPONSE UNDER IMPACT LOADS
【24h】

THE EFFECTS OF NECK STIFFNESS PROPERTIES ON BRAIN RESPONSE UNDER IMPACT LOADS

机译:颈刚度特性对冲击载荷下脑反应的影响

获取原文

摘要

One primary concerns in computational modeling of brain under external loads is to defining the realistic boundary conditions and the head-neck junction stiffness. Neck is a complex structure with cervical spine, neck muscle and ligaments, when considered anatomically. The major mechanical function of the anatomical neck is to support the head through the cervical vertebrae. Few studies have focused on studying the response of head with neck and without neck. In this paper we examine the behavior of head under impact loadings with a simulated neck with elastic foundation- type stiffness. In this FE head -neck model, a three dimensional detailed head model is presented, while for neck, a simplified model of linear elastic springs is considered. The paramount interest is laid in modeling the mechanical functionality of the neck, rather than the modeling of the complete anatomical neck. Determining the exact stiffness properties for the springs, in order to (replicate) duplicate the neck functionality is the most complex aspect in this model. By considering the existing literature stiffness values of neck ligaments and cervical discs, four neck stiffness values ranging from zero stiffness to high stiffened neck have been chosen. A computational parametric examination of the varying the above considered neck stiffness properties are conducted to examine the impact of impact on the head model. Impact loading responses are examined against the Nahum's cadaver experiments. Numerical intracranial coup and contre-coup pressure histories during impact loading show good correlation with the respective experimental results. Brain intracranial pressure, maximum shear stress and strain response under impact are presented. A significant effect on the magnitude and pattern of brain shear stress and strains can be detected in comparison with the intracranial coup pressure response, with varying neck stiffness properties. Biomechanical multiscale studies on brain reveal that distortional strain is one of the main causes for the axonal injury, and this shear strain pattern significantly varies with neck stiffness properties.Thereby, it the extent of the role of the stiffness of the neck in predicting axonal injury can be examined.
机译:外部载荷下脑计算建模的一个主要问题是定义现实的边界条件和头部颈部结刚度。颈部是一种复杂的结构,颈椎,颈部肌肉和韧带,当解剖学上。解剖颈部的主要机械功能是通过颈椎支撑头部。很少有研究专注于研究头部和无颈部的头部的反应。在本文中,我们用弹性基础刚度的模拟颈部检查了冲击载荷下的头部的行为。在该FE头 - 内脏模型中,呈现了三维详细的头部模型,而对于颈部,考虑了一种简化的线性弹性弹簧模型。最重要的兴趣是在颈部的机械功能建模中奠定了建模,而不是完全解剖颈部的建模。确定弹簧的精确刚度特性,以(复制)复制颈部功能是该模型中最复杂的方面。通过考虑颈韧带和宫颈盘的现有文献刚度值,选择了从零刚度到高加入颈部的四个颈部刚度值。对变化的上述颈刚度特性的计算参数检查进行进行,以检查影响对头模型的影响。对Nahum的尸体实验检查了冲击载荷。抗冲击过程中数值颅内冠心和对照压力历史显示出与各个实验结果的良好相关性。提出了脑颅内压力,最大剪切应力和应变反应。与颅内Coup压力响应相比,可以检测对脑剪切应力和菌株的幅度和模式的显着影响,不同的颈刚度特性。脑脑的生物力学多尺度研究表明,扭曲应变是轴突损伤的主要原因之一,这种剪切应变图案随颈刚度特性而显着变化。颈部刚度在预测轴突损伤时的作用程度可以检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号