首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >OPTIMIZATION OF HEAT TRANSFER PROCESS IN A WALKING BEAM REHEAT FURNACE USING COMPUTATIONAL FLUID DYNAMICS
【24h】

OPTIMIZATION OF HEAT TRANSFER PROCESS IN A WALKING BEAM REHEAT FURNACE USING COMPUTATIONAL FLUID DYNAMICS

机译:使用计算流体动力学进行行走梁再热炉中传热过程的优化

获取原文

摘要

In the steelmaking process, reheating furnaces are used to reheat steel slabs to a target rolling temperature. The bottom intermediate zone inside the reheating furnace plays a decisive role in controlling the slab temperature distribution before slabs enter the soaking zone. Efforts to maintain a uniform slab surface temperature and thus enhance product quality require a good understanding of the furnace's operation. However, traditional physical experiments are costly and have high risks as well. In this study, a three-dimensional steady-state computational fluid dynamics (CFD) model was developed to investigate the flow field in the bottom intermediate zone of a full-scale reheating furnace. The commercial software ANSYS Fluent was used to solve the transport equations to predict the flame length, heat transfer, and gas temperature near the slab. Total input mass flow rate, preheated air temperature, and air/fuel ratio were selected to investigate the comprehensive influence of the furnace's performance, which can be evaluated from the flame length, flame angle, and average gas temperature near the slab. Importantly, an orthogonal experimental design was conducted to optimize the evaluation factors by considering the multi influencing factors simultaneously. The simulation results indicate that a higher mass flow rate produces a lower upwards flame angle, which can prevent the hot spot detected on the slab surface. A higher preheated air temperature leads to a higher average gas temperature in this furnace; meanwhile, the flame becomes shorter by enhancing the air-fuel ratio.
机译:在炼钢工艺中,使用再加热炉将钢板再加热到目标轧制温度。再加热炉内的底部中间区在控制平板进入浸泡区之前在控制平板温度分布方面起着决定性作用。努力维持均匀的板坯表面温度,从而提高产品质量需要良好地了解炉的操作。然而,传统的物理实验昂贵并具有高风险。在该研究中,开发了一种三维稳态计算流体动力学(CFD)模型以研究全尺寸再加热炉的底部中间区域中的流场。商业软件ANSYS流畅旨在解决传输方程,以预测板坯附近的火焰长度,传热和气体温度。选择总输入质量流量,预热空气温度和空气/燃料比以研究炉子性能的综合影响,可从火焰长度,火焰角度和平板附近的平均气体温度评估。重要的是,通过考虑同时考虑多重影响因素来进行正交的实验设计以优化评价因素。仿真结果表明,较高的质量流量产生较低的向上火焰角,这可以防止在板式表面上检测到的热点。更高的预热空气温度导致该炉中的较高的平均气体温度;同时,通过提高空燃比,火焰变短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号