首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >COMPUTATIONAL MODELING OF 3D PRINTED TISSUE-ON-A CHIP MICROFLUIDIC DEVICES AS DRUG SCREENING PLATFORMS
【24h】

COMPUTATIONAL MODELING OF 3D PRINTED TISSUE-ON-A CHIP MICROFLUIDIC DEVICES AS DRUG SCREENING PLATFORMS

机译:3D印刷组织芯片微流体装置作为药物筛选平台的计算建模

获取原文

摘要

Physiological tissue-on-a-chip technology is enabled by adapting microfluidics to create micro scale drug screening platforms that replicate the complex drug transport and reaction processes in the human liver. The ability to incorporate three-dimensional (3d) tissue models using layered fabrication approaches into devices that can be perfused with drugs offer an optimal analog of the in vivo scenario. The dynamic nature of such in vitro metabolism models demands reliable numerical tools to determine the optimum tissue fabrication process, flow, material, and geometric parameters for the most effective metabolic conversion of the perfused drug into the liver microenvironment. Thus, in this modeling-based study, the authors focus on modeling of in vitro 3d microfluidic microanalytical microorgan devices (3MD), where the human liver analog is replicated by 3d cell encapsulated alginate hydrogel based tissue-engineered constructs. These biopolymer constructs are hosted in the chamber of the 3MD device serving as walls of the microfluidic array of channels through which a fluorescent drug substrate is perfused into the microfluidic printed channel walls at a specified volumetric flow rate assuring Stokes flow conditions (Re1). Due to the porous nature of the hydrogel walls, a metabolized drug product is collected as an effluent stream at the outlet port. A rigorous modeling approached aimed to capture both the macro and micro scale transport phenomena is presented. Initially, the Stokes Flow Equations (free flow regime) are solved in combination with the Brinkman Equations (porous flow regime) for the laminar velocity profile and wall shear stresses in the whole shear mediated flow regime. These equations are then coupled with the Convection-Diffusion Equation to yield the drug concentration profile by incorporating a reaction term described by the Michael-Menten Kinetics model. This effectively yields a convection-diffusion-cell kinetics model (steady state and transient), where for the prescribed process and material parameters, the drug concentration profile throughout the flow channels can be predicted. A key consideration that is addressed in this paper is the effect of cell mechanotransduction, where shear stresses imposed on the encapsulated cells alter the functional ability of the liver cell enzymes to metabolize the drug. Different cases are presented, where cells are incorporated into the geometric model either as voids that experience wall shear stress (WSS) around their membrane boundaries or as solid materials, with linear elastic properties. As a last step, transient simulations are implemented showing that there exists a tradeoff with respect the drug metabolized effluent product between the shear stresses required and the residence time needed for drug diffusion.
机译:通过适应微流体来制造微量化药物筛查平台,使生理组织组织对芯片技术能够,以复杂化人肝中复杂的药物运输和反应过程。使用分层制造方法将三维(3D)组织模型结合到可以用药物灌注的装置中的能力提供了体内场景的最佳模拟。这种体外代谢模型的动态性质需要可靠的数值工具,以确定最佳的组织制造工艺,流量,材料和几何参数,以获得灌注药中最有效的灌注药物中的最佳组织制造工艺,流动,材料和几何参数进入肝脏微环境中。因此,在基于造型的研究中,作者将重点关注体外3D微流体微量生物体微生物装置(3MD)的建模,其中通过基于3D细胞包封的藻氨酸水凝胶基组的组织工程构建体复制人肝类似物。这些生物聚合物构造在用作微流体通道阵列的壁的3MD装置的腔室中托管,通过该通道的微流体阵列,在指定的体积流量速率下灌注到微流体印刷通道壁上,确保斯托克斯流动条件(RE 1 )。由于水凝胶壁的多孔性质,将代谢的药物产物作为出口处的流出物流收集。旨在捕获宏观和微尺度传输现象的严谨建模。最初,斯托克斯流程方程(自由流动状态)与Brinkman方程(多孔流量)组合求解用于层流速度曲线和整个剪切介导的流动状态的壁剪切应力。然后将这些等式与对流扩散方程联接,通过掺入迈克尔 - 麦龄动力学模型描述的反应术语来产生药物浓度谱。这有效地产生了对流扩散 - 细胞动力学模型(稳态和瞬态),其中对于规定的工艺和材料参数,可以预测整个流动通道的药物浓度分布。本文解决的关键考虑因素是细胞机械调节的影响,其中施加在包封细胞上施加的剪切应力改变肝细胞酶以代谢药物的功能能力。提出了不同的案例,其中细胞被掺入几何模型中,以作为在其膜边界周围经历壁剪切应力(WSS)的空隙,其中具有线性弹性性质。作为最后一步,实施了瞬态仿真,表明,在所需的剪切应力和药物扩散所需的停留时间之间存在促进药物代谢污水产物的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号