首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >POWER FLOW TOPOLOGY OF SUPERCRITICAL CARBON DIOXIDE POWER GENERATION SYSTEM AND ITS APPLICATION IN MODELING AND OPTIMIZATION
【24h】

POWER FLOW TOPOLOGY OF SUPERCRITICAL CARBON DIOXIDE POWER GENERATION SYSTEM AND ITS APPLICATION IN MODELING AND OPTIMIZATION

机译:超临界二氧化碳发电系统的功率流拓扑及其在建模与优化中的应用

获取原文

摘要

The supercritical carbon dioxide (sCO_2) power generation system holds tremendous potential in nuclear, chemical and renewable energy utilization fields due to its compactness, security and high efficiency. However, the dramatic variation in the physical property of sCO_2 complicates the system analysis and optimization. Recent researches usually took simple stack of all governing equations of individual components as the physical model of system. Besides, based on the traditional heat transfer modeling method, some researches apply the segmentation method to take fluid property variation into consideration. These methods exacerbate the multivariate nonlinearity of the system and are not suitable to analyze complex sCO_2 thermal systems. Moreover, taking the consideration of the strong nonlinearity of sCO_2 system, most researches adopt single parameter analysis to obtain the optimum solution, which may not achieve global optimization. In this contribution, introduction of a new definition of thermal resistance of heat exchanger disassembles the original implicit nonlinear properties of heat transfer processes as the linear relation between inlet temperature difference of fluids and heat flow rate, and the explicit nonlinear expression of thermal resistance. For the nonlinearity caused by the variable properties of sCO_2, segmentation is also used in heat exchanger modeling. However differently, the introduction of new defined thermal resistance enables the elimination of most intermediate variables produced by segmentation, which contributes to the connection of all segments in heat exchanger into a heat exchanger network. Furthermore, based on the system layout, the equivalent power flow diagram of the system is built to derive the corresponding governing equations revealing the overall transfer and conversion laws of heat. Combining the flow resistance balance equations of all components and the accompanying power flow processes constraints offers the inherent physical constraints among operating parameters. Benefit from the conciseness of system model, the genetic algorithm can be used for the model optimization. Taking thermal efficiency of the system as the optimization objective, the optimal matching of the operating parameters under variable working conditions is obtained.
机译:超临界二氧化碳(SCO_2)发电系统由于其紧致性,安全性和高效率而占核,化学和可再生能源利用领域的巨大潜力。然而,SCO_2的物理性质的显着变化使系统分析和优化复杂化。最近的研究通常采用单个组件的所有控制方程式作为系统的物理模型。此外,基于传统的传热建模方法,一些研究适用于考虑流体性能变化的分段方法。这些方法加剧了系统的多变量非线性,不适合分析复杂的SCO_2热系统。此外,考虑到SCO_2系统的强烈非线性,大多数研究采用单个参数分析来获得最佳解决方案,可能无法实现全局优化。在这种贡献中,引入热交换器的热阻的新定义拆卸传热过程的原始隐式非线性特性作为流体的入口温度差与热流速率之间的线性关系,以及热阻的显式非线性表达。对于由SCO_2的可变性能引起的非线性,分段也用于热交换器建模。然而,不同的是,引入新的定义的热阻使得能够消除由分割产生的大多数中间变量,这有助于热交换器中的所有区段连接到热交换器网络中。此外,基于系统布局,构建了系统的等效功率流程图,以导出揭示总转移和转换规律的相应控制方程。组合所有组件的流量平衡方程和随附的电力流程约束,提供操作参数之间的固有物理约束。从系统模型的简明中受益,遗传算法可用于模型优化。采用系统的热效率作为优化目标,获得了可变工作条件下的操作参数的最佳匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号