首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >A STOCHASTIC FINITE ELEMENT METHOD FOR SIMULATING TRABECULAR BONE
【24h】

A STOCHASTIC FINITE ELEMENT METHOD FOR SIMULATING TRABECULAR BONE

机译:一种用于模拟小梁骨的随机有限元方法

获取原文

摘要

Background Although trabecular bone is highly porous heterogeneous composite, most studies use homogenized continuum finite element (FE) approaches to model trabecular bone. Such models neglect the porous nature of the tissue. When microstructural models are desired, the use of continuum elements may require costly CT/MRI imaging and detailed meshing. The purpose of this study is to demonstrate an approach that simulates trabecular bone with less dependency on medical images while capturing of porosity. Methods A stochastic structural FE model was created representing the trabecular micro-architecture as beam elements. Beam orientation, length and connectivity were stochastically determined by random placement of nodes and meshing the resulting Voronoi diagram. Boundary conditions were applied on the structure to attain normalized axial and shear strain. Also, apparent mechanical properties, apparent densities and anisotropy ratio's were calculated from the model output. Results The number of generated nodes within the model and cross sectional area of the random beams were observed as parameters that affect model outcome. Trabecular bone apparent density was found highly correlated to beams cross sectional area rather than the generated number of nodes. Similarly, Young's moduli and shear moduli were dependent on beams cross sectional area. For example, a (0.015 mm~2) increase in beam cross section area can produce (175 MPa, 30 MPa and 0.55 g/cm~3) increases in Young's moduli, shear moduli and apparent density, respectively. Clinical Relevance The proposed finite element technique provides a stochastically accurate structural representation of trabecular tissue and its reaction to applied loads. It incorporates several advantages of high fidelity methods but at lower cost and requiring only clinical imaging. Therefore, the approach may be useful for patient specific musculo-skeletal biomechanical models (e.g. osteoporosis, osteoarthritis, joint replacement and implants interface).
机译:背景技术虽然小梁骨是高度多孔的非均相复合材料,但大多数研究使用均质的连续核有限元(Fe)来模拟小梁骨。这些模型忽略了组织的多孔性质。当需要微观结构模型时,使用连续元件可能需要昂贵的CT / MRI成像和详细的啮合。本研究的目的是展示一种方法,用于模拟小梁骨的捕获,同时捕获孔隙率。方法采用随机结构FE模型,表示小梁微架为光束元件。通过节点的随机放置并将所得到的voronoi图网格划分,随机地确定光束方向,长度和连接。施加边界条件对结构进行归一化轴向和剪切菌株。此外,根据模型输出计算表观机械性能,表观密度和各向异性比率。结果观察到随机波束的模型和横截面积内产生的节点的数量作为影响模型结果的参数。发现小梁骨表观密度与光束横截面区域非常相关,而不是产生的节点数量。类似地,杨氏的模数和剪切模量依赖于光束横截面积。例如,光束横截面区域的(0.015mm〜2)增加可以分别产生(175MPa,30MPa和0.55g / cm〜3),分别增加杨氏模量,剪切模量和表观密度。临床相关性提出的有限元技术提供了小梁组织的随机精确结构表示及其对施加载荷的反应。它采用了高保真方法的几个优点,但较低的成本并仅需要临床成像。因此,该方法可用于患者特异性肌肉骨骼生物力学模型(例如骨质疏松症,骨关节炎,关节置换和植入物界面)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号