首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >DIGITIZED HEAT TRANSFER FOR THERMAL MANAGEMENT OF COMPACT SYSTEMS
【24h】

DIGITIZED HEAT TRANSFER FOR THERMAL MANAGEMENT OF COMPACT SYSTEMS

机译:用于紧凑型系统的热管理数字化传热

获取原文

摘要

Active thermal management of compact microsystems by a periodic array of discrete liquid metal droplets is proposed and referred to as "digitized heat transfer." This is in contrast to con-vective heat transfer by a continuous liquid flow. Two methods of droplet actuation, electrowetting on dielectric and continuous electrowetting, are described. Liquid metals or alloys support significantly higher heat transfer rates than other fluids, such as water or air. In addition, electrowetting is an efficient method of microscale fluid control, requiring low actuation voltages and very little power consumption. These concepts are used in this investigation to design an active management technique for high-power-density electronic and integrated micro systems. Preliminary calculations indicate that this technique could potentially offer a viable cooling strategy for achieving some of the most important objectives of electronic cooling, i.e., minimization of the maximum substrate temperature, reduction of the substrate temperature gradient and removing substrate hot spots. Numerical simulation of a droplet in a microchannel is also investigated. We propose a technique for dynamically calculating the slip velocity at the wall boundary including both the advancing and receding contact lines. The technique is based on the observed non-Newtonian behavior of a continuous liquid flow at high shear rates and its associated slip velocity (Thompson and Trioan 1997). While most of the wall boundary has negligible slip, significant slip at the advancing and receding contact lines are calculated from the data itself.
机译:通过周期性的离散液体金属液滴阵列的紧凑型微系统的主动热管理,并称为“数字化传热”。这与连续液体流动的传热相反。描述了两种液滴致动方法,电润湿电介质和连续电润湿。液体金属或合金支持比其他流体(例如水或空气)明显​​较高的传热速率。此外,电润湿是一种有效的微观流体控制方法,需要低致动电压和功耗很小。这些概念用于本研究以设计高功率密度电子和集成微系统的主动管理技术。初步计算表明,该技术可能潜在地提供可行的冷却策略,用于实现电子冷却的一些最重要的目标,即最小化最大基板温度,底物温度梯度降低和去除衬底热点。还研究了微通道中液滴的数值模拟。我们提出了一种用于动态计算墙边界的滑动速度的技术,包括推进和后退接触线。该技术基于高剪切速率的连续液体流动的观察到的非牛顿行为及其相关的滑动速度(Thompson和Trioan 1997)。虽然大多数墙边界具有可忽略不计的滑移,但是从数据本身计算了推进和后退接触线的显着滑动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号