首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >Modeling stresses of contacts in wiresaw slicing of polycrystalline and crystalline ingots: application to silicon wafer production
【24h】

Modeling stresses of contacts in wiresaw slicing of polycrystalline and crystalline ingots: application to silicon wafer production

机译:金属晶锭线束切削界面胁迫的构建应力:硅晶片生产的应用

获取原文

摘要

Wiresaw is a cost-effective technology with high surface quality for slicing large diameter silicon wafers. Though wiresaws have been deployed to cut polycrystalline and single crystal silicon ingot since early 1990s, very little is known aboutthe fundamental cutting process. We investigate this manufacturing process and propose a contact stress model of wiresaw slicing which illustrates the interactions among the wire, ingot, and abrasives (e.g., SiC) carried by the slurry. Stresses created by wiresaw slicing silicon wafers are analyzed in this paper. During the cutting process, the wire moves at high speed (5-15 m/s) with respect to the silicon ingot. The abrasives in the slurry are lose third-body particles caught between the wire and ingotat the contact surface. The forces applied by the wire carry the abrasive particles and cause them to roll on the surface and at the same time to be constrained to indent the surface. Such rolling-indenting interactions result in the formation of isolated chips and surface cracks. The cracks and discontinuity on the surface also cause high stress concentration. As a result the material is cut and removed. The stress fields of a single circular cone of the abrasive particle indenting on silicon crystal with normal and tangential forces can be calculated and analyzed from the modeling equations and boundary conditions. The stresses are expressed with dimensionless stress measures, as functions of normalized geometric parameters. The results show that themaximum normal stress occurs at the indentation point while the maximum shear stress (σ{sub}(zx)) occurs below the surface of contact, as expected. Such subsurface shear facilitates the peeling effects of the silicon cracks. Both the normal andtangential forces applied at the contacts are incorporated in the model. The model is very effective in explaining and predicting the behaviors and distributions of stresses during the cutting process, and can be used to determine the optimal geometry ofthe abrasive particles in the rolling-indenting process.
机译:WireSaw是一种经济高效的技术,具有高直径硅晶片的高表面质量。虽然自20世纪90年代初以来,虽然被部署以切割多晶和单晶硅锭,但很少有关于基本切割过程所知的。我们研究了该制造过程,并提出了线锯切片的接触应力模型,其说明了浆料携带的电线,铸锭和磨料(例如,SiC)之间的相互作用。本文分析了线锯切片硅晶片产生的应力。在切割过程中,电线以高速(5-15米/秒)相对于硅锭移动。浆料中的磨料失去捕获在线和夹板接触表面之间的第三体颗粒。焊丝施加的力携带磨料颗粒并使它们卷在表面上,同时被约束以缩进表面。这种滚动缩进相互作用导致碎片和表面裂缝的形成。表面上的裂缝和不连续性也引起高应力浓度。结果,材料被切割并除去。可以从建模方程和边界条件下计算和分析在具有正常和切向力的硅晶体上缩进的磨粒的螺母的单个圆锥的应力场。应力以无量纲应力测量表示,作为归一化几何参数的功能。结果表明,在压痕点发生故障常态应​​力,而最大剪切应力(σ{sub}(zx))如预期的那样发生在接触表面以下。这种地下剪切有助于硅裂缝的剥离效果。在触点处施加的正常和幂力均在模型中纳入其中。该模型在解释和预测切割过程中的应力的行为和分布方面非常有效,并且可用于确定轧制缩进过程中磨料颗粒的最佳几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号