首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >FABRICATION OF 3D BONE SCAFFOLDS FUNCTIONALIZED WITH SPATIOTEMPORAL RELEASE OF BMP-2 GROWTH FACTOR VIA ICVD TO ENHANCE OSTEOREGENERATION
【24h】

FABRICATION OF 3D BONE SCAFFOLDS FUNCTIONALIZED WITH SPATIOTEMPORAL RELEASE OF BMP-2 GROWTH FACTOR VIA ICVD TO ENHANCE OSTEOREGENERATION

机译:通过ICVD通过ICVD官能释放BMP-2生长因子的3D骨支架的制造,以增强骨赘

获取原文

摘要

3D scaffolds are known to be used in bone tissue engineering applications due to their great potential of providing multi-functionalized environment for cells. Different production techniques have been used focusing on changing geometrical features or adding biological/chemical compounds to improve the functionality of current 2D/3D scaffolds. A critical component to this functionalization relates to the effect of endogenous and exogeneous growth factors (GF) in the bone regeneration process that could be incorporated to the scaffolds via Initiated Chemical Vapor Deposition (iCVD) which is a solvent free method that requires low energy while also containing a wide variety of monomer choices for the layer by layer coating of polymers with individual functionality choices. However, GFs come with several difficulties such as rapid deactivation. low protein stability profile and little time of half-life, hence ideal environments that can overcome these issues are yet to be defined. Towards that goal, in this study we develop a computational framework based on the implementation of the advection-diffusion-reaction Partial Differential Equations (PDE) in a Finite Element Analysis (FEA) solver in COMSOL Multiphysics software. The goal is to develop a tool and conduct an initial analysis to be utilized for the simulation of multi-layer scaffold functionalized using encapsulation and immobilization of GFs inside nanoparticles possibly via iCVD. In this paper we focus on the analysis of two typical GF (BMP-2 and TGF) release mechanisms based on the effect of key material and geometrical parameters such as thickness of layers, initial GF concentration, diffusion coefficient, release function and uptake rate (absorption coefficient). The ultimate goal is to develop a model that can be used for future bone scaffold design studies when integrated to more advanced optimization methodologies. This model with further integration and updates of chemical and biological parameter measurements and inclusion of presence of antibodies should lay down a valuable basis for directing possible experimental functionalization efforts and their effects on the healing process of bone tissue. Initial results indicate that the proposed computational model can be utilized to predict the response of multi-layered bone scaffolds in terms of the concentration profiles of the GFs. Results of the parametric study presented in this paper prompt for the relative importance of each parameter in tuning the GF release profiles and point towards the need for formal optimization studies to achieve desired GF release responses considering all factors simultaneously. Among them, the diffusion coefficient is a key parameter with both a dominant effect on the GF profile and its ability to characterize different coatings using iCVD methods. As a next step, the developed framework will be updated to incorporate more detailed surface reactions and morphological data to simulate iCVD coated growth factors and verified with possible in-vitro studies before its integration to a formal optimization methodology.
机译:已知3D支架由于它们为细胞提供多功能环境的巨大潜力而​​在骨组织工程应用中使用。已经使用不同的生产技术,这些技术专注于改变几何特征或添加生物/化合物以改善电流2D / 3D支架的功能。该官能化的关键组分涉及内源性和不均匀生长因子(GF)在骨再生过程中的效果,其可以通过引发的化学气相沉积(ICVD)掺入支架中,这是一种需要低能量的溶剂方法通过具有个体功能选择的聚合物层涂层,还含有各种单体选择。然而,GFS具有多种困难,例如快速停用。低蛋白质稳定性曲线和半衰期的时间很少,因此可以克服这些问题的理想环境。在该研究中,在该研究中,我们基于在COMSOL Multiphysics软件中的有限元分析(FEA)求解器中的平流扩散反应部分微分方程(PDE)的实施方式开发了计算框架。该目标是开发一种工具,并进行初步分析,以用于模拟使用纳米颗粒内的GFS在纳米颗粒内的封装和固定的多层支架官能化的模拟。在本文中,我们专注于基于关键材料和几何参数诸如层厚度,初始GF浓度,扩散系数,释放功能和摄取率(吸收系数)。最终目标是开发一种模型,可用于将未来的骨架设计研究集成到更先进的优化方法。该模型具有进一步集成和更新的化学和生物学参数测量和包含抗体的存在,应放下有价值的基础,以指导可能的实验功能化努力及其对骨组织愈合过程的影响。初始结果表明,所提出的计算模型可用于预测在GFS的浓度轮廓方面的多层骨支架的响应。本文提出了参数研究的结果,提示为调整GF释放配置文件的每个参数的相对重要性,并指向正式优化研究的需要,以实现所需的GF释放响应同时考虑所有因素。其中,扩散系数是对GF曲线的主导效应的关键参数及其使用ICVD方法表征不同涂层的能力。作为下一步,将更新发达的框架以纳入更详细的表面反应和形态数据以模拟ICVD涂覆的生长因子,并在其整合到正式优化方法之前通过可能的体外研究进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号