首页> 外文会议>International Conference on Computational and Experimental Engineering and Sciences >Supervised Learning for Finite Element Analysis of Holes Under Tensile Load
【24h】

Supervised Learning for Finite Element Analysis of Holes Under Tensile Load

机译:抗拉载荷下孔有限元分析的学习

获取原文

摘要

As the use of machine learning becomes more common, there are many algorithms that are readily available to perform supervised learning. This paper is to evaluate the feasibility of supervised learning in simplifying the finite element analysis of holes under tensile load. The objective of this approach is to determine if the mesh size can be significantly reduced with supervised learning. The neural network training is performed with just a small set of 55 course mesh with 2-D linear element against the analytical solution of a hole under tensile load in an infinite width plate. The coarse mesh only has 2 elements along the quarter hole perimeter. The training would be done using the displacement nodal solution of the nearest 6 nodes to the hole's edge. Three common back propagation network algorithms are evaluated; Conjugate Gradient, Bayesian and Levenberg-Marquart methods. These algorithms are used along with the tangent sigmoid and pure linear transfer functions. In the infinite width problem, the Bayesian algorithm with the tangent sigmoid function offers the highest accuracy in the testing of the network model. However, this model performs poorly when it is applied to the finite width problem. To reduce the prediction error, the training would be done solely based on the displacement u_y component. The displacement u_x component is removed from the network training since the displacement field in the x direction is quite different between the infinite hole solution and finite hole solution. Further testing shows the prediction can be improved by using the Levenberg-Marquart method with pure linear function. With these options, the prediction error is just 3% even though the mesh size is relatively coarse with only 2 elements along the perimeter. In contrast, the normal finite element method with this coarse mesh has an error of 26%. To achieve similar accuracy, the standard FEM would require 3 times the number elements along the perimeter to achieve similar accuracy. This initial result shows there is synergy between machine learning and finite element method in reducing the mesh size requirement and yet achieve good accuracy.
机译:随着机器学习的使用变得更加常见,有许多算法可以随时可用于执行监督学习。本文是评估监督学习的可行性,以简化拉伸负荷下孔的有限元分析。这种方法的目的是通过监督学习确定网格尺寸是否可以显着降低。通过仅具有2-D线性元件的一小组55课程网进行神经网络训练,其抵抗无限宽度板的拉伸负荷下的孔的分析溶液。粗网格仅具有沿四分之一孔周长的2个元素。将使用最近的6个节点的位移节点解决方案到孔的边缘来完成培训。评估三个常见的回波传播网络算法;共轭梯度,贝叶斯和levenberg-marquart方法。这些算法与切线矩形和纯线性传递函数一起使用。在无限宽度问题中,贝叶斯算法具有切线丝状函数,在网络模型测试中提供了最高的精度。然而,当它应用于有限宽度问题时,该模型表现不佳。为了减少预测误差,培训将仅基于位移U_Y组件来完成。由于X方向上的位移场与有限孔解决方案之间的位移场相当不同,因此从网络训练中移除位移U_X组件。通过使用具有纯线性函数的Levenberg-Marquart方法,可以提高预测。使用这些选项,即使网格尺寸相对粗糙,预测误差仅为3%,其沿周边仅具有2个元素。相反,具有该粗网格的正常有限元方法具有26%的误差。为了实现类似的准确性,标准FEM将需要沿周边的数元素3倍以达到类似的准确性。该初始结果显示了机器学习和有限元方法之间的协同作用,降低了网格尺寸要求,但达到了良好的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号