首页> 外文会议>International Conference on Materials Science and Engineering: Recent Advances and Challenges >Influence of Chromium Content and Prior Deformation on the Continuous Cooling Transformation Diagram of Low-Carbon Bainitic Steels
【24h】

Influence of Chromium Content and Prior Deformation on the Continuous Cooling Transformation Diagram of Low-Carbon Bainitic Steels

机译:铬含量的影响及现有变形对低碳贝氏体钢的连续冷却变换图

获取原文

摘要

The effect of chromium content and prior hot deformation of the austenite on the continuous cooling transformation (CCT) diagram of a newly developed low-carbon bainitic steel has been studied using dilatometer measurements conducted on a Gleeble 3800 simulator with cooling rates ranging from 2-80 °C/s. After austenitization at 1100 °C, specimens were either cooled without strain or given 0.6 strain at 880 °C prior to dilatometer measurements. The resultant microstructures have been studied using laser scanning confocal microscopy, scanning electron microscopy and macrohardness measurements. CCT and deformation continuous cooling transformation (DCCT) diagrams were constructed based on the dilatation curves, final microstructures and hardness values. Depending on the cooling rate, the microstructures of the investigated steels after cooling from the austenite region consist of one or more of the following microstructural components: lath-like upper bainite, i.e. bainitic ferrite (BF), granular bainite (GB), polygonal ferrite (PF) and pearlite (P). The proportion of BF to GB as well as the hardness of the transformation products decreased with decreasing cooling rate. The cooling rate at which PF starts to appear depends on the steel composition. With both undeformed and deformed austenite, increasing the chromium content led to higher hardenability and refinement of the microstructure, promoting the formation of BF and shifting the ferrite start curve to lower cooling rates. Prior hot deformation shifted the transformation curves to shorter times and higher temperatures and led to a reduction in hardness at the low cooling rates through the promotion of ferrite formation.
机译:使用在Gleyble 3800模拟器上进行的膨胀计测量,研究了铬含量和奥氏体对奥氏体的连续冷却变换(CCT)图的效果研究了新开发的低碳贝氏体钢的图的连续冷却变换(CCT)图。冷却速率从2-80的冷却速度测量°C / s。在1100℃下奥氏体化后,在膨胀计测量之前,在880℃下在880℃下冷却试样而没有菌株或给出0.6株。使用激光扫描共聚焦显微镜,扫描电子显微镜和宏观度测量研究了所得的微观结构。 CCT和变形连续冷却变换(DCCT)图是基于扩张曲线,最终微观结构和硬度值构建的。取决于冷却速度,调查钢从奥氏体区冷却后的微结构由一个或多个以下的微观结构的组件组成:板条状的上贝氏体,即贝氏体铁素体(BF),粒状贝氏体(GB),多边形铁素体(PF)和珠光体(P)。 BF至Gb的比例以及转化产物的硬度随着降低的冷却速率而降低。 PF开始出现的冷却速率取决于钢结构。随着未变形和变形的奥氏体,增加铬含量导致微观结构的更高的淬透性和细化,促进BF的形成并使铁氧体开始曲线降低冷却速率。先前的热变形将变换曲线移位到更短的时间和更高的温度,并通过促进铁氧体形成,导致低冷却速率的硬度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号