首页> 外文会议>International Conference on Reversible Computation >Physical Foundations of Landauer's Principle
【24h】

Physical Foundations of Landauer's Principle

机译:Landauer原则的实物基础

获取原文

摘要

We review the physical foundations of Landauer's Principle, which relates the loss of information from a computational process to an increase in thermodynamic entropy. Despite the long history of the Principle, its fundamental rationale and proper interpretation remain frequently misunderstood. Contrary to some misinterpretations of the Principle, the mere transfer of entropy between computational and non-computational subsystems can occur in a thermo-dynamically reversible way without increasing total entropy. However, Landauer's Principle is not about general entropy transfers; rather, it more specifically concerns the ejection of (all or part of) some correlated information from a controlled, digital form (e.g., a computed bit) to an uncontrolled, non-computational form, i.e., as part of a thermal environment. Any uncontrolled thermal system will, by definition, continually re-randomize the physical information in its thermal state, from our perspective as observers who cannot predict the exact dynamical evolution of the microstates of such environments. Thus, any correlations involving information that is ejected into and subsequently ther-malized by the environment will be lost from our perspective, resulting directly in an irreversible increase in thermodynamic entropy. Avoiding the ejection and thermalization of correlated computational information motivates the reversible computing paradigm, although the requirements for computations to be thermodynamically reversible are less restrictive than frequently described, particularly in the case of stochastic computational operations. There are interesting possibilities for the design of computational processes that utilize stochastic, many-to-one computational operations while nevertheless avoiding net entropy increase that remain to be fully explored.
机译:我们审查了Landauer原则的实际基础,这与计算过程中的信息丢失涉及热力学熵的增加。尽管原则的历史悠久,但其基本理由和适当的解释仍然经常被误解。与原则的一些误解相反,仅在计算和非计算子系统之间的熵转移可以以热动态可逆的方式发生,而不会增加总熵。然而,Landauer的原则不是关于一般熵转移;相反,它更具体地涉及从受控的数字形式(例如,计算比特)到不受控制的非计算形式,即作为热环境的一部分的来自受控的数字形式(例如,计算比特)喷射(全部或部分)一些相关信息。根据定义,任何不受控制的热系统将在我们的视角下连续地将物理信息持续地重新加速其热状态,从我们的视角下,他们不能预测这种环境的微米的精确动态演变。因此,从我们的角度来看,任何涉及喷射到和随后对其进行搅拌的信息的任何相关性,从我们的角度丧失,导致热力学熵的不可逆转增加。避免相关计算信息的弹出和热化激励可逆计算范例,尽管用于热力学上可逆的计算的要求比经常描述的限制较小,特别是在随机计算操作的情况下。设计过程的设计有很有趣的可能性,该过程利用随机,多对一计算操作,虽然避免了剩余探索的净熵增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号