首页> 外文会议>Asia-Pacific Conference on Combustion >Numerical investigation of thermal and chemical effects of nanosecond repetitively pulsed discharges on a laminar premixed counterflow flame
【24h】

Numerical investigation of thermal and chemical effects of nanosecond repetitively pulsed discharges on a laminar premixed counterflow flame

机译:纳秒重复脉冲放电在层流预混逆流火焰上的热化学效应的数值研究

获取原文

摘要

This paper focuses on modelling the influence of nanosecond repetitively pulsed (NRP) corona discharges on a lean premixed methane-air flame at atmospheric pressure and ambient temperature. The discharges are produced by high voltage pulses of 3.5 kV amplitude and 10 ns duration, with a repetition frequency of 30 kHz. Taking into account the geometry of the electrodes, at breakdown, the reduced electric field is then comprised between 40 and 500 Td. The flame has an equivalence ratio of 0.7. A numerical model is developed to determine the effect of the discharges on the unburnt gas. In a first scenario, all the plasma energy goes to chemical reactions, eventually resulting in ozone production. A second scenario considers that all the plasma energy is thermal, thus leading to a temperature increase of the fresh gases. The third scenario considers that half the energy goes to ozone production and the other half to fresh gases heating. The ozone concentrations or gas heating resulting from each of these scenarios are then implemented into the simulation of a freely propagating flame, allowing the comparison of thermal and chemical effect of plasma discharges, as well as their combined effect, on the laminar flame speed and adiabatic flame temperature. The high ozone concentrations (up to 10,000 ppm) resulting from the NRP corona discharges enhance the laminar flame speed up to 40% of its initial value, while the temperature increase (up to 10 K) results into a maximum flame speed enhancement of 25%. The effect on the adiabatic flame temperatures follow a similar trend.
机译:本文重点介绍在大气压和环境温度下建模纳秒重复脉冲(NRP)电晕放电对贫预混甲烷 - 空气火焰的影响。放电由3.5kV幅度和10ns持续时间的高压脉冲产生,重复频率为30 kHz。考虑到电极的几何形状,在击穿时,减小的电场被包括在40至500 Td之间。火焰的等效比为0.7。开发了一种数值模型以确定放电对Unburnt气体的影响。在第一场景中,所有等离子体能量都能进入化学反应,最终导致臭氧产生。第二种情况认为所有等离子体能量都是热的,因此导致新鲜气体的温度增加。第三个方案认为,一半的能量达到臭氧生产,另一半到新鲜气体加热。然后将这些场景中的每一个产生的臭氧浓度或气体加热进行易于传播的火焰的模拟,允许在层状火焰速度和绝热上比较等离子体放电的热和化学效果,以及它们的组合效果。火焰温度。由NRP电晕放电产生的高臭氧浓度(最多10,000ppm)增强了层状火焰速度高达40%的初始值,而温度升高(最多10 k)导致最大火焰速度增强25% 。对绝热火焰温度的影响遵循类似的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号