首页> 外文会议>conference of the italian thermal machines engineering association >Optimization of heliostat field in a thermal solar power plant with an unfired closed Joule-Brayton cycle
【24h】

Optimization of heliostat field in a thermal solar power plant with an unfired closed Joule-Brayton cycle

机译:热太阳能发电厂中的光晕场地优化,未封闭的joule-brayton循环

获取原文

摘要

In the last decades, concentrating solar power (CSP) has been gaining increasing attention as a sustainable technology for producing electricity. Nowadays, in the world, 483.6 MWs are produced by CSP plants of which 457 MW are already in commercial stage, whereas the other 430 MWs are under construction. In this paper, a solar tower with an unfired closed Joule-Brayton cycle of 10 MW peak power, located in Seville, is analyzed. The cycle, that employs only atmospheric air, without fuel consumption, relies on the possibility to vary the mean density of the air flowing in the plant. By using an auxiliary compressor and a bleed valve, a variable mass flow rate can be obtained so to keep the temperature at turbine inlet constant. On the other hand, in the concentrated solar plant, the number of installed heliostats can reflect towards the receiver the nominal thermal power, even with reduced values of the DNI. With the increase of the radiation, when the thermal energy flux achieves the limit tolerable by the receiver, a part of heliostats is defocused. On the contrary, in the presence of transients, due, for example, to clouds or in case of low solar radiation, the mirrors will be all, or in part, oriented towards the receiver face, so to keep constant the receiver outlet air temperature at the design value. Both the above mentioned control systems, without any fuel addition, act with the common goal of maintaining constant the air temperature at turbine inlet. However, they intervene at different times: at rated power, heliostats work, while the air flow rate is kept constant at the maximum value; when the nominal conditions are no longer achievable (the DNI values are insufficient), the adjustment is performed through the modulation of the pressure base control system, focusing the entire surface of the mirrors on the receiver. The analysis shows how the interaction between these systems influences the number and size of heliostats to be installed in the solar field. The study of the state of art has demonstrated that, in tower systems currently in operation, without storage, a solar multiple of 1.3 is generally used; our contribution shows how, with the air density control system, this value may be reduced, with consequent benefit on the heliostats cost. The numerical tests have been carried out by using the WINDELSOL software to optimize the heliostat field configuration and the THERMOFLOW, for the thermodynamic analysis.
机译:在过去的几十年中,集中的太阳能(CSP)一直在越来越越来越受到电力的可持续技术。如今,在世界上,483.6兆瓦由CSP工厂生产,其中457兆瓦已经在商业阶段,而另外430兆瓦正在建设中。在本文中,分析了一个太阳能塔,其位于塞维利亚的10 MW峰值电源的未封闭的joule-brayton循环。仅在没有燃料消耗的情况下使用大气空气的循环依赖于改变在植物中流动的空气的平均密度的可能性。通过使用辅助压缩机和排放阀,可以获得可变质量流量,从而使温度保持在涡轮机入口恒定。另一方面,在浓缩的太阳能电厂中,安装的Heliostats的数量可以反射到接收器的标称热功率,即使是DNI的值。随着辐射的增加,当热能通量达到接收器的极限时,定义了一部分Heliostats。相反,在瞬变存在下,由于云层或在太阳辐射低的情况下,镜子将全部或部分,朝向接收器面向定向,因此保持恒定的接收器出口空气温度在设计价值。上述控制系统都没有任何燃料加法,与保持涡轮机入口处保持恒定的空气温度的共同目标。然而,它们在不同的时间进行干预:在额定功率,Heliostats的工作,而空气流速保持在最大值处;当不再可实现标称条件(DNI值不足)时,通过调制压力基础控制系统来执行调整,将镜子的整个表面聚焦在接收器上。该分析显示了这些系统之间的交互方式如何影响安装在太阳能场中的光晕目录的数量和尺寸。对现有技术的研究表明,在目前在运行的塔系统中,通常使用1.3的太阳倍数;我们的贡献显示如何随着空气密度控制系统,可以减少该值,随后对Heliostats成本的影响。通过使用Windelsol软件进行数值测试,以优化Heliostat现场配置和热流动,以进行热力学分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号