首页> 外文会议>CIRP Conference on Modelling of Machining Operations >Smoothed particle hydrodynamics (SPH) simulation and experimental investigation on the diamond fly-cutting milling of zirconia ceramics
【24h】

Smoothed particle hydrodynamics (SPH) simulation and experimental investigation on the diamond fly-cutting milling of zirconia ceramics

机译:氧化锆陶瓷钻石飞铣的平滑粒子流体动力学(SPH)仿真及实验研究

获取原文

摘要

This paper presents a more efficient ultra-precision diamond fly-cutting method to achieve the damage-free surface machining of hard-brittle zirconia ceramics at one time instead of the traditional abrasive-based processes. Firstly, the smoothed particle hydrodynamics (SPH) cutting simulation model of zirconia ceramics is established in LS-DYNA based on JH-2 constitutive model. The radial diamond fly-cutting milling experiments of zirconia ceramics are carried out on the three-axis ultra-precision machine tool, and the correctness of SPH simulation model is verified by the brittle-ductile transition (BDT) depth and chip morphology. Then, the effects of tool geometry and cutting parameters on stress distribution, brittle-ductile transition depth, cutting force characteristics, and chip morphology are investigated by the proposed model. Some conclusions are given as follows: the tool with more negative rake angle are benefit for hydrostatic pressure and getting greater brittle-ductile transition depth; the critical brittle-ductile transition depths of zirconia ceramics under -15 degree and -35 degree tool rake angle are 0.8μm and 1μm, respectively. Finally, by controlling the maximum undeformed chip thickness below 1μm, an application experiment is carried out and a crack-free nanometer-level surface is achieved in the axial diamond fly-cutting milling of zirconia ceramics.
机译:本文提出了一种更有效的超精密钻石飞行方法,可在一次替代传统的研磨过程中实现硬脆氧化锆陶瓷的无损坏表面加工。首先,基于JH-2本构模型,在LS-DYNA中建立了氧化锆陶瓷的平滑粒子流体动力学(SPH)切割模拟模型。氧化锆陶瓷的径向金刚石飞行铣削实验是在三轴超精密机床上进行的,并且通过脆性延展转换(BDT)深度和芯片形态来验证SPH仿真模型的正确性。然后,通过提出的模型研究了刀具几何形状和切割参数对应力分布,脆性 - 延展性过渡深度,切割力特性和芯片形态的影响。一些结论如下:具有更负负耙角的工具是静水压力的有益,并获得更大的脆性 - 延展性过渡深度; -15度和-35度工具耙角下氧化锆陶瓷的临界脆性韧性转变深度分别为0.8μm和1μm。最后,通过控制低于1μm的最大未变形芯片厚度,进行了应用实验,并在氧化锆陶瓷的轴向金刚石飞行铣削中实现了无裂缝的纳米水平表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号