首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference >Experimental and Simulation Studies on Magnetic Nanoparticle Assembly for Scalable Polymer Nanocomposite Fabrication
【24h】

Experimental and Simulation Studies on Magnetic Nanoparticle Assembly for Scalable Polymer Nanocomposite Fabrication

机译:可伸缩聚合物纳米复合材料磁纳米粒子组件的实验性和仿真研究

获取原文

摘要

The magnetic assembly of nanoparticles is a promising technique for the scalable manufacturing of tailored polymer nanocomposites. Tailored nanostructure assembly can lead to improvements in thermal, electrical, and mechanical properties of polymer nanocomposites, but it is currently difficult to achieve hierarchical morphologies of the nanoparticles. The usage of magnetic fields is a useful method to control nanoparticle assembly since it allows the bulk processing of polymer nanocomposites, while still retaining nanostructures across the large volume. Further studies are necessary for the control over magnetic nanoparticle assembly due to uncertainties in parametric variations. This work presents continued experimental and new theoretical work on nanoparticle assembly using oscillating magnetic fields. In the last 2016 SciTech/AIAA SDM conference, experimental parametric studies were presented about the effects of the magnetic flux density, frequency, and concentration on the nanoparticle structuring.In this work, the effects of additional parameters of the applied magnetic fields (the waveform type and low frequencies) and the nanoparticles (magnetic properties and size) were investigated. In order to understand the experimentally observed trends, simulations are being performed using COMSOL Multiphysics Modeling Software, particularly on the interactions between particles. Our results demonstrate that frequencies as low as 0.04 Hz can provide significant tailorability to nanoparticle assemblies. In addition, a sinusoidal waveform is found to provide even more tailorability at low frequencies compared to a square waveform. The influence particle size is apparent; larger and more homogenous nanoparticle assemblies are found for increasing particle size. In simulations, a magnetic threshold length was calculated as a function of particle orientation and separation; when the nanoparticles are separated beyond the threshold length, nanoparticle assembly does not occur due to hydrodynamic forces. The understanding of the underlying assembly mechanisms will help evaluation of the scalability of manufacturing a tailored polymer nanocomposite using an oscillating magnetic field. In near-future, fabrication of coupon-sized, thin polymer nanocomposites will be demonstrated using a scaled-up magnetic assembly set-up.
机译:纳米颗粒的磁性组件是用于可伸缩制造的定制聚合物纳米复合材料的有希望的技术。定制的纳米结构组件可导致聚合物纳米复合材料的热,电气和机械性能的改善,但目前难以实现纳米颗粒的等级形态。磁场的使用是控制纳米颗粒组件的有用方法,因为它允许聚合物纳米复合材料的块状处理,同时仍然保持沿大容量的纳米结构。由于参数变化中的不确定性,对磁性纳米颗粒组件进行进一步的研究是必要的。本作品采用振荡磁场呈现纳米粒子组件的持续实验和新的理论上。在过去的2016年SCITECH / AIAA SDM会议中,磁通密度,频率和浓度对纳米颗粒结构的影响提出了实验参数研究。在这项工作中,施加磁场的附加参数的影响(波形研究了型和低频)和纳米颗粒(磁性和尺寸)。为了了解实验观察到的趋势,正在使用COMSOL Multiphysics建模软件进行模拟,特别是在粒子之间的相互作用上进行。我们的结果表明,低至0.04Hz的频率可以为纳米粒子组件提供显着的批准性。另外,与方波形相比,发现在低频时提供正弦波形以在低频下提供更多尺度。影响粒径是明显的;发现较大且更均匀的纳米颗粒组件用于增加粒度。在仿真中,计算磁阈值长度作为颗粒取向和分离的函数;当纳米颗粒分离超过阈值长度时,由于流体动力学力不会发生纳米颗粒组件。理解潜在的装配机制将有助于评估使用振荡磁场制造定制聚合物纳米复合材料的可扩展性。在近期,使用缩小的磁性组件设定,将演示优惠券大小的优惠尺寸的薄聚合物纳米复合材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号