首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech Forum >Experimental and Simulation Studies on Magnetic Nanoparticle Assembly for Scalable Polymer Nanocomposite Fabrication
【24h】

Experimental and Simulation Studies on Magnetic Nanoparticle Assembly for Scalable Polymer Nanocomposite Fabrication

机译:磁性纳米粒子组装可扩展聚合物纳米复合材料制备的实验与仿真研究

获取原文

摘要

The magnetic assembly of nanoparticles is a promising technique for the scalable manufacturing of tailored polymer nanocomposites. Tailored nanostructure assembly can lead to improvements in thermal, electrical, and mechanical properties of polymer nanocomposites, but it is currently difficult to achieve hierarchical morphologies of the nanoparticles. The usage of magnetic fields is a useful method to control nanoparticle assembly since it allows the bulk processing of polymer nanocomposites, while still retaining nanostructures across the large volume. Further studies are necessary for the control over magnetic nanoparticle assembly due to uncertainties in parametric variations. This work presents continued experimental and new theoretical work on nanoparticle assembly using oscillating magnetic fields. In the last 2016 SciTech/AIAA SDM conference, experimental parametric studies were presented about the effects of the magnetic flux density, frequency, and concentration on the nanoparticle structuring.In this work, the effects of additional parameters of the applied magnetic fields (the waveform type and low frequencies) and the nanoparticles (magnetic properties and size) were investigated. In order to understand the experimentally observed trends, simulations are being performed using COMSOL Multiphysics Modeling Software, particularly on the interactions between particles. Our results demonstrate that frequencies as low as 0.04 Hz can provide significant tailorability to nanoparticle assemblies. In addition, a sinusoidal waveform is found to provide even more tailorability at low frequencies compared to a square waveform. The influence particle size is apparent; larger and more homogenous nanoparticle assemblies are found for increasing particle size. In simulations, a magnetic threshold length was calculated as a function of particle orientation and separation; when the nanoparticles are separated beyond the threshold length, nanoparticle assembly does not occur due to hydrodynamic forces. The understanding of the underlying assembly mechanisms will help evaluation of the scalability of manufacturing a tailored polymer nanocomposite using an oscillating magnetic field. In near-future, fabrication of coupon-sized, thin polymer nanocomposites will be demonstrated using a scaled-up magnetic assembly set-up.
机译:纳米粒子的磁性组装是用于可定制的聚合物纳米复合材料的可规模制造的有前途的技术。量身定制的纳米结构组装可以改善聚合物纳米复合材料的热,电和机械性能,但是目前难以实现纳米颗粒的分层形态。磁场的使用是控制纳米粒子组装的有用方法,因为它可以对聚合物纳米复合材料进行批量处理,同时仍保留大体积的纳米结构。由于参数变化的不确定性,对磁性纳米粒子组装的控制需要进一步的研究。这项工作提出了使用振动磁场的纳米粒子组装的继续的实验和新的理论工作。在最近的2016 SciTech / AIAA SDM会议上,进行了关于磁通量密度,频率和浓度对纳米粒子结构的影响的实验性参数研究。类型和低频)和纳米粒子(磁性能和尺寸)进行了研究。为了了解实验观察到的趋势,正在使用COMSOL Multiphysics Modeling Software进行仿真,尤其是对粒子之间的相互作用进行仿真。我们的结果表明,低至0.04 Hz的频率可以为纳米粒子组件提供显着的可定制性。另外,发现与正弦波形相比,正弦波形在低频时可提供更大的可调整性。影响粒度是显而易见的。发现更大和更均匀的纳米颗粒组装体用于增加粒度。在模拟中,磁性阈值长度被计算为颗粒取向和分离的函数;当纳米颗粒被分离超过阈值长度时,由于流体动力而不会发生纳米颗粒组装。对基本组装机制的理解将有助于评估使用振荡磁场制造定制的聚合物纳米复合材料的可扩展性。在不久的将来,将使用按比例放大的磁性组件设置来演示制造试样尺寸的薄聚合物纳米复合材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号